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What is Pedestrian Detection?

-

machine

Input image Output detection
Complex problem for machine
O Recognition: What is a pedestrian?

O Localization: Where are pedestrians?
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Why Pedestrian Detection?

—

Intelligent surveillance Robotics
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Challenges

Occlusions
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Possible Solutions

» Learn multiple models for different scales

» Human parts detection

» Hard negative samples mining
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Scale-aware Fast R-CNN for Pedestrian

Detectionl!

Scale-aware : i
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[1] Li, J., Liang, X., Shen, S., Xu, T., Feng, J., & Yan, S. (2018). Scale-aware fast R-CNN for pedestrian
detection. IEEE Transactions on Multimedia, 20(4), 985-996.
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Deep learning strong parts for pedestrian

detection!?]
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[2] Tian, VY., Luo, P., Wang, X., & Tang, X. (2015). Deep learning strong parts for pedestrian detection.
In Proceedings of the IEEE international conference on computer vision (pp. 1904-1912).
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|s faster R-CNN doing well for pedestrian
detection?!3!

[3] Zhang, L., Lin, L., Liang, X., & He, K. (2016, October). Is faster R-CNN doing well for pedestrian
detection?. In European Conference on Computer Vision (pp. 443-457). 10
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Motivation & Contributions

» Full-body and part-based methods: too coarse to localize small
and occluded pedestrians

» Fine-grained information with pixel-wise classification to help
detection

» Multiple feature maps of different resolutions to deal with scale
variances issue
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Flowchart

)

Upsampling

[

Scale-Aware Network

» Human Parsing Network
» Generate human parsing mask and convert it into attention map

» Scale-Aware Network
 Exploit intermediate feature maps for multiple scales detection

 Attention map guides the detection to focus on pedestrians .
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Human Parsing Network

» Network Architecture
* Truncated VGG16 with ‘atrous’ convolution
 Deconvolution to up-sample to image size
» Concatenate multiple layers to form hierarchical feature maps

Human Parsing
Network

Upsampling
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Human Parsing Network

» Weakly Supervised Training
 Only bounding box annotations available
» Consider 80% pixels at the center area of the bounding box as foreground
—> Eliminate background noise
—> Focus on main parts of human

HPN
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Scale-Aware Network

» Network Structure
« Truncated VGG16 + extra convolutional layers

» Multiple scale detection
 High resolution feature maps (shallower layers) for small targets detection
» High-level semantic feature maps (deeper layers) for large pedestrians detection
 Each detection layer followed by a detection module
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Scale-Aware Network

» Detection Module
« Encode attention map into feature maps

As,c — DS,C(M) ® Fs,c

« Context module: concatenate 2 layers of different receptive fields
—> Incorporate more context information
 Prediction module outputs the detection results
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Visualization of feature maps

Initial feature maps Feature maps with attention
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Optimization

» Implementation details
1. Separately train Scale-Aware Network and Human Parsing Network
2. Jointly optimize both networks
—> Facilitate the convergence

> Multi-task loss
L — Lh-nx -+ A.{:Lcﬂllf + )\S Lscg
\ Y J k_Y_)

SAN HPN
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Experimental Results

» Caltech Pedestrian
« 42,782 training images
» 4,024 test images
 Evaluation metric: average miss rate

» KITTI
7,481 training images
« 7,518 test images
 Evaluation metric: mean average precision (AP)
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miss rate
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Experimental Results

> Caltech Pedestrian

» Heavy occluded: taller than 50 pixels, visibility € [0.36, 0.80]
« Medium: pedestrian height € [30, 80] pixels, reasonable visibility
» Overall: all pedestrian taller than 20 pixels, with or non occlusion
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Experimental Results

» KITTI
« Moderate setting: pedestrian taller than 25 pixels with or non occlusion

» Computing Time
 Real time pedestrian detector
« Our method is at least 2x faster
 Great trade-off of performance and runtime

Method Caltech | KITTI | Runtime

RPN+BF [4] 74.36 61.29 0.5s
SA-FastRCNN [25] | 64.35 65.01 0.5s

DeepParts [16] 60.42 58.67 ls
MS-CNN [5] 59.94 73.70 0.14s
SDS-RCNN [11] 58.55 63.05 0.21s
F-DNN[13] 55.13 - 0.3s
F-DNN+SS [13] 53.76 - 2.48s
JL-Tops [10] 49.20 - 0.6s

Ours 38.53 66.32 0.07s s
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Experimental Results

> Ablation Studies

Disable main components successively
» Segmentation mask: performance drops by ~2%
« Context module: performance drops by ~2.5%

Corﬁpenent Disabled | Medium | Heavy | Overall
Context module 35.31 44,37 | 49.99
Segmentation mask 33.27 40.27 | 47.83
Our-MDFL 31.46 38.53 | 46.85

_____________ ——
Context Module N [ Prediction Module

Box Regression

2. Context module

1. Segmentation mask >
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Conclusion and Future Works

» Fine Grained Attention map
 Guide the detector to focus on pedestrians
 Eliminate background interference

» Future works
* Implement the proposed method into video based detector
» Exploit temporal information
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