

i-VisionGroup@Tsinghua

Multi-Grained Deep Feature Learning for Pedestrian Detection

Chunze Lin, Jiwen Lu, Jie Zhou Tsinghua University, China

1 Introduction

2 Related Work

③ Proposed Approach

(4) Experimental Results

What is Pedestrian Detection?

Input image

machine

Output detection

Complex problem for machineRecognition: What is a pedestrian?Localization: Where are pedestrians?

Why Pedestrian Detection?

Autonomous driving

Intelligent surveillance

Robotics

Challenges

Large variances of scales

Blurry representation

Occlusions

Noisy background

1 Introduction

2 Related Work

③ Proposed Approach

(4) Experimental Results

Possible Solutions

Learn multiple models for different scales

Human parts detection

Hard negative samples mining

Scale-aware Fast R-CNN for Pedestrian Detection^[1]

[1] Li, J., Liang, X., Shen, S., Xu, T., Feng, J., & Yan, S. (2018). Scale-aware fast R-CNN for pedestrian detection. *IEEE Transactions on Multimedia*, *20*(4), 985-996.

i-VisionGroup@Tsinghua

Deep learning strong parts for pedestrian detection^[2]

[2] Tian, Y., Luo, P., Wang, X., & Tang, X. (2015). Deep learning strong parts for pedestrian detection. In Proceedings of the IEEE international conference on computer vision (pp. 1904-1912).

9

Is faster R-CNN doing well for pedestrian detection?^[3]

(a) Small positive instances

(b) Hard negatives

[3] Zhang, L., Lin, L., Liang, X., & He, K. (2016, October). Is faster R-CNN doing well for pedestrian detection?. In *European Conference on Computer Vision* (pp. 443-457).

1 Introduction

② Related Work

- **③** Proposed Approach
- **④** Experimental Results

Motivation & Contributions

Full-body and part-based methods: too coarse to localize small and occluded pedestrians

- Fine-grained information with pixel-wise classification to help detection
- Multiple feature maps of different resolutions to deal with scale variances issue

Flowchart

- Human Parsing Network
 - Generate human parsing mask and convert it into attention map
- Scale-Aware Network
 - Exploit intermediate feature maps for multiple scales detection
 - Attention map guides the detection to focus on pedestrians

Human Parsing Network

Network Architecture

- Truncated VGG16 with 'atrous' convolution
- Deconvolution to up-sample to image size
- Concatenate multiple layers to form hierarchical feature maps

Human Parsing Network

Weakly Supervised Training

- Only bounding box annotations available
- Consider 80% pixels at the center area of the bounding box as foreground

HPN

- \rightarrow Eliminate background noise
- \rightarrow Focus on main parts of human

Scale-Aware Network

Network Structure

- Truncated VGG16 + extra convolutional layers
- Multiple scale detection
 - High resolution feature maps (shallower layers) for small targets detection
 - High-level semantic feature maps (deeper layers) for large pedestrians detection
 - Each detection layer followed by a detection module

Scale-Aware Network

Detection Module

• Encode attention map into feature maps

$$\mathbf{A}_{s,c} = D_{s,c}(\mathbf{M}) \odot \mathbf{F}_{s,c}$$

• Context module: concatenate 2 layers of different receptive fields

 \rightarrow Incorporate more context information

• Prediction module outputs the detection results

Visualization of feature maps

Image/Patch

Initial feature maps

Feature maps with attention

Optimization

Implementation details

- 1. Separately train Scale-Aware Network and Human Parsing Network
- 2. Jointly optimize both networks
- \rightarrow Facilitate the convergence

Multi-task loss

1 Introduction

2 Related Work

- ③ Proposed Approach
- **(4)** Experimental Results

Caltech Pedestrian

- 42,782 training images
- 4,024 test images
- Evaluation metric: average miss rate

> KITTI

- 7,481 training images
- 7,518 test images
- Evaluation metric: mean average precision (AP)

Caltech Pedestrian

- Heavy occluded: taller than 50 pixels, visibility $\in [0.36, 0.80]$
- Medium: pedestrian height \in [30, 80] pixels, reasonable visibility
- Overall: all pedestrian taller than 20 pixels, with or non occlusion

(a) Heavy Occluded

(b) Medium

(c) Overall

> KITTI

• Moderate setting: pedestrian taller than 25 pixels with or non occlusion

Computing Time

- Real time pedestrian detector
- Our method is at least 2x faster
- Great trade-off of performance and runtime

Method	Caltech	KITTI	Runtime
RPN+BF [4]	74.36	61.29	0.5s
SA-FastRCNN [25]	64.35	65.01	0.5s
DeepParts [16]	60.42	58.67	1s
MS-CNN [5]	59.94	73.70	0.14s
SDS-RCNN [11]	58.55	63.05	0.21s
F-DNN[13]	55.13	-	0.3s
F-DNN+SS [13]	53.76	-	2.48s
JL-Tops [10]	49.20	-	0.6s
Ours	38.53	66.32	0.07s

Ablation Studies

Disable main components successively

- Segmentation mask: performance drops by ~2%
- Context module: performance drops by ~2.5%

Component Disabled	Medium	Heavy	Overall
Context module	35.31	44.37	49.99
Segmentation mask	33.27	40.27	47.83
Our-MDFL	31.46	38.53	46.85

Conclusion and Future Works

Fine Grained Attention map

- Guide the detector to focus on pedestrians
- Eliminate background interference

Future works

- Implement the proposed method into video based detector
- Exploit temporal information

