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Abstract—In this paper, we address the challenging problem
of detecting pedestrians which are heavily occluded and/or
far from cameras. Unlike most existing pedestrian detection
methods which only use coarse-resolution feature maps with
fixed receptive fields, our approach exploits multi-grained deep
features to make the detector robust to visible parts of occluded
pedestrians and small-size targets. Specifically, we jointly train a
multi-scale network and a human parsing network in a weakly-
supervised manner with only bounding box annotations. We
carefully design the multi-scale network to predict pedestrians
of particular scales with the most appropriate feature maps,
by matching their receptive fields with the target sizes. The
human parsing network generates a fine-grained attention map
which helps guide the detector to focus on the visible parts of
occluded pedestrians and small-size instances. Both networks are
computed in parallel and form a unified single stage pedestrian
detector, which assures a suitable trade-off between accuracy and
speed. Moreover, we introduce an adversarial hiding network to
make our detector more robust to occlusion situations, which
generates occlusions on pedestrians in the goal to fool the detector
that in turn adapts itself to learn to localize these adversarial
instances. Experiments on three challenging pedestrian detection
benchmarks show that our proposed method achieves state-of-
the-art performance and executes 2× faster than competitive
methods.

Index Terms—Pedestrian detection, human parsing, attention,
deep feature learning

I. INTRODUCTION

Pedestrian detection is one of the most important topics
in computer vision and has attracted great attention over the
past few years [1]–[13]. It is a key technology in many
practical applications such as automotive safety, intelligent
video surveillance and human behavior analysis. Despite the
recent progress, it is still a challenging problem to detect
occluded pedestrians due to the noisy representation and small-
size targets because of the low resolution. Fig. 1 illustrates
some examples of small and occluded pedestrian images.

Existing pedestrian detection methods can mainly be mainly
classified into two categories: hand-crafted features based [2],
[4], [5], [15], [16] and deep learning features based [6], [7],
[17]–[19]. For the first category, prior knowledge such as edges
and human shapes are considered to generate features and
decision trees are usually learned by applying boosting to
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(a) (b)

Fig. 1. Several examples of small and occluded pedestrians. (a) Pedestrians
are often occluded by cars from Caltech dataset [14]. (b) In addition to
occlusion, pedestrians are usually of small sizes, which makes the detection
even more challenging.

these features to form a pedestrian detector. For the second
category, features are learned via a series of convolutional
and pooling layers according to the training data. With its
deep structure, the convolutional neural network (CNN) gen-
erates more abstract and high-level semantic features which
significantly improve the pedestrian detection performance.

While many CNN-based pedestrian detection methods have
been proposed in recent years, there are still two main short-
comings: 1) most of them usually use feature maps with a
single receptive field to deal with multi-scale pedestrians. The
mismatch between the sizes of targets and receptive fields
limits the performance. The small-size instances especially
suffer from this inconsistency, which are often ignored when
the receptive field is too large; 2) most of them are full-body
detectors which are not efficient when dealing with occlusion
situation. Even if some methods learn a set of human part
detectors to handle the occlusion issue, the feature maps of
coarse resolution are often employed for detection. However,
the body parts are of small sizes and their information on
the coarse-resolution feature maps are limited, making them
indistinguishable from the background. The representations of
high resolution are therefore necessary for effective detection.

In this paper, we propose a multi-grained deep feature
learning (MDFL) method to simultaneously handle the occlu-
sion and small-size problems in pedestrian detection. Fig. 2
illustrates an overview of the proposed framework. Instead of
using feature maps with single resolution and fixed receptive
field, we introduce a multi-scale network which exploits
multiple feature maps for detection and a human parsing
network which incorporates pixel-wise information to guide
the detector. The multi-grained feature maps make the detector
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Fig. 2. Overview of the proposed framework. Given an input image, the human parsing network generates fine-grained feature maps which are encoded
into the feature maps of the multi-scale network as a segmentation-aware attention map to help focus on visible parts of occluded targets and small-size
pedestrians. The multi-scale network employs multiple feature maps with different receptive field sizes and resolutions to detect pedestrians of specific scale.

more robust to large variation of scales and especially to small-
size targets. We collaboratively learn the multi-scale network
and the human parsing network, which form a single-shot
pedestrian detector and can directly output predicted bounding
boxes without any post-processing, except a simple NMS. The
multi-scale network is carefully designed to form a feature
pyramid and detects pedestrian of specific size with most
appropriate feature maps. Shallower feature maps with small
receptive field are employed for detecting small-size targets
while deeper layers are used for large instances. The human
parsing network generates a fine-grained human parsing mask,
which is then converted into an attention map to guide the
multi-scale network focus on pedestrians. In addition, we
also propose an adversarial hiding network (AHN) which
artificially generates occlusion on pedestrians to make our
detector be more robust to occlusion issue. The AHN aims
to hide most discriminative parts of pedestrians so that the
well trained detector becomes unable to recognize the targets.
In turn, the detector will adapt itself to learn to recognize
these adversarial instances. Experiments results on challenging
pedestrian detection datasets including Caltech [14], KIT-
TI [20] and INRIA [15] demonstrate the effectiveness of the
proposed method, which achieves state-of-the-art performance
and executes at least 2× faster than competitive approaches.

This paper is an extended version of our conference pa-
per [21]. There are several new contributions:

1) We exploit the adversary to generate hard occlusion
cases to make our pedestrian detector be more robust
when dealing with occlusion situations.

2) We perform extensive ablation analysis and examine the
impacts of different main components of our model on
the detection performance.

3) We conduct more additional experiments on the widely

used pedestrian dataset INRIA [15] and achieve the
state-of-the-art performance.

II. RELATED WORK

In this section, we briefly review two topics: 1) pedestrian
detection and 2) simultaneous detection and segmentation.

A. Pedestrian Detection

Visual human analysis [22]–[29] is one of the most im-
portant topics in computer vision since human is the central
component in real world applications. Pedestrian detection,
as a key technology in visual human analysis, has attract-
ed great attention over the past decade and many efforts
have been made to improve the performance of pedestrian
detection. Existing methods can be mainly categorized into
two classes: hand-crafted features based [30]–[34] and deep
convolutional features based [6], [7], [17], [35], [36]. The
Integrate Channel Features (ICF) [2] is among the most
popular pedestrian detectors without using deep features. It
exploited channel feature pyramids and boosted classifiers.
The feature representations of ICF have been widely studied
and many variants have been proposed [4], [5], [37], [38]. With
the prevalence of deep convolutional neural network [39]–[41],
most recent pedestrian detection approaches are deep CNN-
based. Since the region proposal based detectors [42], [43]
have achieved great results in general object detection, many
pedestrian detection methods were variations of Faster R-
CNN [43]. MS-CNN [7] integrated a feature pyramid property
into Faster-RCNN [43] to address the scale problem. While
SA-FastRCNN [44] proposed multiple built-in sub-networks
to detect pedestrians with scales from disjoint ranges. Instead
of using RoIPooling [43] followed by some fully connected
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layers, some methods used stronger classifiers to boost the
performance. In RPN+BF [6], given pedestrian candidates
generated by the Region Proposal Network (RPN) [43], con-
volutional features were extracted and fed into a boosted
forest (BF) to perform hard negative samples mining and
make the detector more robust. SDS-RCNN [17] replaced the
boosted forest by a VGG16 network [45] for classification
and exploited an additional semantic segmentation loss to
implicitly supervise and guide the detector. While F-DNN [46]
used SSD [47] for region proposals and a series of deep
classifiers in parallel to post verify each candidate. Besides,
apart the above full-body detectors, some methods [11], [19],
[48]–[50] learned occlusion-specific detectors, where each one
was responsive to detect a human part to handle occlusion
issue. These detectors would give a high confidence score
based on the parts which are still visible when the full-body
detector is confused by the presence of background. Different
from most of the above pedestrian detection methods which
adopted two-stage pipeline [43], [51] needing considerable
computing time, we propose a single stage framework. Instead
of part-level detection we exploit pixel-wise classification to
deal with occlusion and small-size issues.

B. Simultaneous Detection and Segmentation

There are two main lines of research on simultaneous
detection and segmentation. The first aims to improve the
performance of both detection and segmentation tasks [52]–
[54]. For example, Dai et al. [56] constructed a cascaded
network on top of the region proposal network [43] to predict
instance-aware segmentation mask. Qi [55] proposed hierar-
chically gated deep networks to customize a suitable scale for
targets of different sizes. He et al. [57] extended the Faster-
RCNN framework [43] by adding a branch for segmentation in
parallel with existing branch for bounding box prediction. The
second tends to use segmentation as a strong cue to improve
detection. For example, Mao et al. [58] considered features
of different semantic levels and fused with deep convolutional
features. They demonstrated that fusing semantic segmentation
features with deep convolutional features improves significant-
ly the detection performance than other features. Tian et al. [8]
incorporated the scene attributes to improve the detection
accuracy. This method discarded hard negative samples due
to the complex background with the scene attributes. Du et
al. [46] utilized the semantic segmentation (SS) information
as an additional deep classifier in their F-DNN+SS framework.
The segmentation mask was used in a post-processing manner
to eliminate the predicted bounding boxes that contain only
the background. While most of the above approaches re-
quire external pixel-wise annotations to train the segmentation
module, we explore a weakly supervised strategy and only
need bounding box annotations for training. Instead of using
the segmentation mask as a post-processing or hard mining
strategy, our attention mechanism is computed in parallel with
the multi-scale network and explicitly activates the pedestrian
regions.

C. Generative Adversarial Networks

Generative adversarial networks (GANs) [59] have shown
very exciting results for numerous generative tasks such as
image generation [60]. Recently, the adversarial training and
its ability of generating hard data have been used to improve
many practical tasks. For example, Zhao et al. [61] introduced
a generative network for hard triplet generation to optimize the
network ability in distinguishing similar examples of different
categories while grouping instances of the same categories.
Li et al. [62] proposed a perceptual GAN that generate
super-resolution representation of small objects to boost the
detection performance of these small samples. More similar
with our work, Wang et al. [63] extended the Faster-RCNN
framework [43] with an adversarial network for generating
examples with occlusions and deformations to challenge o-
riginal object detectors. However, in this work the occlusion
shape is handcrafted defined and the generator has limited
interaction with the detector. In contrast, our adversarial hiding
network learns to generate deformable occlusion according to
the targets and receive information directly from the detector,
which makes it generate more challenging occlusion examples.

III. APPROACH

In this section, we first present our proposed MDFL detector
which predicts a series of bounding boxes and scores, followed
by non-maximum suppression (NMS) to produce the final
detection results. Then we introduce the adversary which has
the goal to improve the detection performance in occlusion
conditions. Lastly, we present how to optimize these deep con-
volutional networks and give the details of our implementation.

Our MDFL framework is composed of two key parts: a
multi-scale network which detects pedestrian using multi-
grained features and a human parsing network which generates
a fine-grained attention map to help the multi-scale network
focus on regions that contain pedestrians. These two networks
are computed in parallel and form a single stage detection
framework [47], which offers a great trade-off between accu-
racy and speed. Fig. 2 illustrates an overview of the proposed
architecture of our approach.

A. Multi-scale Network

In natural scenes, pedestrian images usually have large
variations and appear at multiple scales. Instead of conven-
tional image pyramids, we design the multi-scale network to
detect the pedestrians of specific size using feature maps with
appropriate resolution and receptive field. Specifically, high-
resolution feature maps are used for smaller targets detection
while feature maps with larger receptive field are extracted for
large-size pedestrians detection.

1) Architecture of the network: The multi-scale network, as
shown in Fig. 3, is composed of the following structures:
• Trunk Network: The multi-scale network is based on a

truncated VGG16 network [45] where the fully connected
layers are converted into convolutional layers and the
classification layers are removed. Extra convolutional
layers are added to the end of the base network. These
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Fig. 3. The architecture of the multi-scale network. It mainly consists of a truncated VGG16 net and detection modules. The detection layers presented in
green, are used for multi-scale pedestrian detection. Each detection layer is followed by a detection module for the final prediction. In the detection module,
the operator Ds,c firstly converts the segmentation mask into the attention map. We then encode the attention map into the feature maps of the multi-scale
network via element-wise multiplication operation, activating most relevant parts of the feature maps. The concatenation of convolutional layers with different
receptive fields allows to incorporate context information. The 1× 1 convolution filter then selects the best features before predictions.

TABLE I
THE HEIGHT OF REFERENCE BOX IN PIXELS ASSOCIATED TO EACH

PREDICTION LAYER. THE CONTEXT MODULE PROVIDES TWO DIFFERENT
TRFS WHICH MIMICS THE CONTEXT INFORMATION INCORPORATION.

Detection Layer Box Height TRF
conv4 3 30, 60 108, 124
conv5 3 90, 120 228, 260
conv fc7 150, 180 292, 324
conv6 2 240, 270 356, 420
conv7 2 320, 350 484, 612

layers decrease in size and increase in receptive field
progressively in order to cover multi-scale pedestrians.

• Detection Layers: We select conv4 3, conv5 3, conv fc7,
conv6 2 and conv7 2 as detection layers according to
their increasingly large receptive field sizes.

• Context Module: In two-stage detector, it is common to
incorporate context information by enlarging the region
proposal. We simulate this effect in a simple convolution-
al manner. Concretely, a feature map with larger receptive
field size is fused with an initial feature map to mimic the
context incorporation. Fig. 3 illustrates the details of the
context module, where an 1× 1 and an 3× 3 filters are
computed in parallel. The convolutional layer with the
kernel size 3× 3 has larger receptive field which permits
to introduce additional context information.

• Prediction Layer: The context module is followed by two
3×3 convolutional layers to produce classification scores
and bounding box offsets respectively.

2) Design of Reference Boxes: We evaluate a series of
reference boxes of different aspect ratios at each location in
prediction layers. For each reference box, we predict both
the shape offsets and the confidence for pedestrian. More the
reference boxes concord with the ground truth bounding boxes,
easier will be the bounding box regression. Since the reference
boxes have an important effect on the regression performance,
they are carefully designed based on the receptive field of
the prediction layers. According to [64], in the theoretical
receptive field (TRF) of a convolutional layer, center pixels

have much more impact comparing to the rest, and as a result,
the effective area is in general of Gaussian form. Based on
this observation, the height of our reference boxes is designed
significantly smaller than the TRF in order to match the
effective area (see Table I). Once the height of the box is
determined, the width is computed according to the aspect
ratios of pedestrians: {0.25, 0.41, 0.52}. As the result, six
reference boxes of different scales are considered at each
location in the feature maps of prediction layers.

3) Multi-scale Network Learning: Our framework has two
sibling output layers. The first outputs bounding-box regres-
sion offsets, d = (dx, dy, dw, dh). The parameterization for d
is as in [42], in which it specifies a scale-invariant translation
and log-space height/width shift relative to a reference box.
The second branch outputs the detection confidence score,
computed by a softmax over two classes (pedestrian v.s.
background). We use the following loss function to supervise
the multi-scale network:

LSAN = Lconf + λbLbox (1)

The box regression loss Lbox targets at minimizing the Smooth
L1 loss R(d, ĝ) [42], between the estimated parameters (d)
and the ground truth box regression targets (ĝ), where ĝ has
the same parametrization as d.

Lbox =
1

N

N∑
i∈Pos

∑
k∈{x,y,w,h}

xijR(d
k
i − ĝkj ) (2)

where xij = {1, 0} is an indicator for matching the i-th
reference box to the j-th ground truth box and N is the
number of matched reference boxes. If N = 0, we set the
loss of the detector to 0. In our implementation, we begin by
matching each ground truth box to the reference box with
the best intersection over union (IoU) and we then match
reference boxes to any ground truth with IoU higher than 0.5.
This training strategy and the definition of reference boxes
constraint different layers to detect pedestrians of specific size.
The confidence score loss Lconf is the softmax loss. In our
experiments, we regularize our multi-task loss by setting the
weight terms λb = 1.
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Input image with ground-truth Feature maps Segmentation mask Feature maps with attention

Fig. 4. Illustration of the segmentation results and the attention map effects on the convolutional feature maps. First column: images with the ground truth
bounding boxes drawn in green and the artificial foreground areas presented in red which are used for training the human parsing network. Second column
to fourth column: conv4 3 convolutional feature maps of the given images (left), the segmentation mask (middle), and the feature maps with attention map
(right). The resulting feature maps highlight pedestrians while ignoring most background regions. Best viewed in color.

B. Human Parsing Network
In parallel with the multi-scale network, the human parsing

network generates a semantic segmentation mask which class-
es the regions that contain pedestrians as foreground and the
rest as background. We then convert the mask into an attention
map and encode into the feature maps to guide the detection.
The pixel-wise classification permits to highlight small-size
pedestrian and especially the body parts of occluded instances
which are often ignored by full-body detector.

1) Architecture of the Network: The human parsing net-
work is based on the VGG16 network truncated at conv5 3.
We change the layer pool4 from 2×2-s2 to 3×3-s1 and adopt
the atrous algorithm [65] to compute more dense feature maps.
Each convolutional stage (conv2 2, conv3 3 and conv5 3)
is up-sampled to generate feature maps at the size of the
input image. The concatenation of these hierarchical maps
forms discriminative feature maps which are then followed
by an 1×1 convolutional layer and a sigmoid layer to output
pedestrian segmentation mask. Note that the stem parts (conv1-
conv2) are computationally expensive, we share these layers
with the multi-scale network. The architecture of the human
parsing network is depicted in the top part of Fig. 2.

2) Weakly Supervised Learning: In general, only bounding
box annotations are provided in pedestrian detection tasks.
Therefore, to train our human parsing network, we follow a
weakly supervised strategy by creating artificial foreground
segmentation using bounding box information. In practice, we
consider the center area of the bounding box (65% of pixels
within the box) as foreground, as shown the first column
in Fig. 4. This process considerably eliminates background
inside the bounding box while keeping the main parts of
pedestrian. We use the cross-entropy loss Lseg to supervise our
human parsing network, which aims to minimize the difference
between the prediction and the ground truth mask generated

as discussed above. Some segmentation results are illustrated
in the third column of Fig. 4. We can verify that, despite the
weak annotations, the pedestrians are effectively highlighted.

3) Segmentation-Aware Attention Map: In order to make
our detector more robust to small-size targets and occluded
pedestrians, we exploit the fine-grained features generated by
the human parsing network to help guide the detection. Specif-
ically, by encoding the segmentation-aware attention map into
the feature maps of the detection layers, we substantially
reduce the background interference and enhance the features
representing pedestrians and visible body parts. The occluded
targets can be then inferred based on these visible parts. Fig. 3
illustrates the architecture of the detection module with the
attention map inserted. Specifically, given the segmentation
mask M , we convert it into an attention map by down-
sampling the size and increasing the channel number, in order
to match with the feature maps of the detection layer Fs,c.
The resulting activated feature maps As,c can be formulated
as:

As,c = Ds,c(M)� Fs,c (3)

where Ds,c(M) down-samples the segmentation mask M
by s times and outputs with c channels. In practice, we
down-sample the spatial size of the segmentation mask with
average pooling layer. We then harmonize the channel number
with 1 × 1 convolutional layers. � represents the Hadamard
operator. Some results are depicted in Fig. 4, which show
that the conv4 3 feature maps with the attention mechanism
become more focused on pedestrians and the background is
significantly smoothed.

C. Adversarial Hiding Network

Occlusion cases occur occasionally in the real world ap-
plications, e.g. pedestrian trying to across the street may be
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Fig. 5. Distribution of pedestrians with respect to their heights on the Caltech
training set. The distribution of all pedestrians is plotted in blue while the
distribution of heavily occluded pedestrians are presented in brown.

occluded by cars. Failed detection in the such situation will re-
sult in dramatical accident. It is therefore important to improve
the robustness of our detector to deal with occlusion issues.
Besides the difficulty of the task, the lack of occluded instances
consists also a main reason that the current pedestrian detectors
struggle to recognize occluded targets. By considering the
Caltech training set [14], we observe that there are only 2,973
heavily occluded instances (36-80% occluded) among the total
21,666 pedestrians. Fig. 5 illustrates the distribution of all and
occluded pedestrians on Caltech dataset.

1) AHN Overview: In order to increase the number of
occluded instances, we develop an adversarial hiding network
(AHN) to generate occlusion on pedestrians. Given the feature
maps of the input image, the AHN aims to hide the parts of
pedestrians making the detector unable to recognize effectively
the target. More specifically, our AHN predicts a mask MAHN

which is either 0 or 1 after thresholding on pedestrian regions.
The AHN hides the body parts by assigning zeros while keeps
intact the rest of the feature maps. Let M i,j

AHN be the value
for the ith row and jth column of the mask. We perform an
element-wise multiplication with the feature maps X across
all channels, so that if M ij

AHN = 0, Xijk = 0. Where Xijk

denotes the value in channel k at location i, j of the feature
maps. However, without any constraint, our adversarial hiding
network would mask out totally the pedestrians, so that the
detector cannot localize any target. In order to avoid this
situation, for each bounding box that contains a pedestrian, we
only mask out the τ% areas within the bounding box, which
correspond to the most relevant parts for our adversarial hiding
network. In contrast to our human parsing network which aims
to highlight pedestrian and helps the detector, our adversarial
hiding network tends to hide most important parts of body and
force the detector to focus on less discriminative details.

2) Network Architecture: The adversarial hiding network
needs firstly to find out the pedestrians, before effectively
masking out the body parts. We therefore build the AHN
on top of our human parsing network to avoid redundant
computations. The adversarial hiding network is composed of
5 convolutional layers and takes the last feature maps from
the human parsing network as input. Fig. 6 gives an overview

of our framework with the adversarial hiding network.
3) Adversarial Learning: The goal of our adversarial hiding

network is to make the detector least capable to distinguish
pedestrian by masking out body parts. Mathematically, let
F(X) represent the original pedestrian detector, where X cor-
responds to the feature maps. The detector outputs confidence
scores Fc and bounding box locations Fl at multiple positions.
When training the pedestrian detector, we aim to minimize
the difference between the prediction and the ground truth
bounding boxes. In contrast, the adversary tends to maximize
this difference. We supervise therefore our adversarial hiding
network via the following loss function:

LAHN = −Lconf (Fc(A(X)), Gc) (4)

where A(X) denotes the feature maps with artificial occlusion
generated by the adversarial hiding network and Gc is the
ground truth label. The loss will be high when the generated
feature maps with occlusion are easy for the detector. If the
relevant body parts are effectively hided, the detector becomes
unable to find out the pedestrian. We will then get a high
loss for the detector while a low loss for the adversarial
hiding network. It is worth to note the loss supervising our
human parsing network can also be used for training our
adversarial hiding network. However, the segmentation loss
is pixel-wise based and is less helpful as we constantly mask
out τ% pedestrian parts. Without this constraint, our AHN will
inevitably hide the entire body of the targets, which makes
the detector unable to see anything, leading thus to a high
detection loss.

The output of the adversarial hiding network (AHN) is a
mask with values between 0 and 1, and we aim this network to
return a binary mask with values as 0 or 1. However, the back-
propagation of gradients would be impossible with a sampling
operation. In order to avoid this problem, instead of a hard
sampling operation, we perform a soft sampling process with
an intermediate supervision signal during the training. To be
specific, during the training of our adversarial hiding network,
we generate a pseudo-ground-truth binary mask based on the
output of the AHN and use it as a supervision signal. To
generate this pseudo-ground-truth binary mask, we set the
40% smallest values inside the bounding boxes containing
pedestrians to 0 while set the rests and the points which
are outside of the bounding boxes to 1. With this artificial
intermediate supervision signal, the adversarial hiding network
tends to yield a binary mask and is constrained to hide 40%
parts of pedestrians. In practice, we use a cross-entropy loss
between the pseudo-ground-truth binary mask and the output
of the AHN for learning. The hiding mask generated by the
AHN is then encoded into the feature maps for detection and
can receive information from the detector by back propagation
as we do not directly employ any sampling operation. The
adversarial loss function becomes as follows:

LAHN = −Lconf (Fc(A(X)), Gc)− LCE(A,Mb) (5)

where LCE(A,Mb) corresponds to the cross-entropy loss
between the output of the adversarial hiding network A and
the pseudo-ground-truth binary maskMb. Note that during the
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Fig. 6. Training pipeline of the adversarial hiding network (AHN). Given the output of the AHN, we generate a pseudo-ground-truth binary mask to supervise
the adversarial network. This supervision makes the adversarial hiding network compute a binary mask and only hide 40% of pedestrian. In addition, with
this strategy the information from the multi-scale network can be directly back-propagated.

Algorithm 1 MDFL+Adv Training
Input: Training images, annotations
Output: Pedestrian detector
Step 1: Freeze the well trained MDFL
Step 2: Train the adversarial hiding network with the loss
function LAHN

Step 3: Optimize the multi-scale network with occluded
feature maps

testing, we can use a hard sampling process to have a strict
binary mask.

D. Implementation Details

1) MDFL Training: Our multi-scale network and human
parsing network were partially initialized with the detection
model of [47] and the DeepLab segmentation model [65], re-
spectively. All new additional layers were randomly initialized
with the Xavier [66]. In order to facilitate the convergence,
we first trained the two networks separately and then the both
networks were jointly optimized. Specifically, the multi-scale
network was fine-tuned for 50k iterations where we used 10−4

learning rate for the first 40k iterations then continued with
10−5 for the rest iterations. The human parsing network was
fine-tuned for 80k iterations with a learning rate of 10−8. The
both networks are then jointly optimized for 10k iterations
supervised with the following multi-task loss:

L = Lconf + λbLbox + λsLseg (6)

where λb = 2 and λs = 1 are the weight terms to balance
the loss. All our implementations were based on Caffe frame-
work [67].

2) Adversarial Training: The adversarial hiding network
and the detector were trained alternatively. We first trained
our multi-scale network and human parsing network which
form an effective pedestrian detector. Given the well trained
pedestrian detector, we froze the parameters of the model and
only optimized the adversarial hiding network. In turn, once
the adversarial hiding network was able to hide the relevant
body parts, we fixed its parameters and trained the multi-scale
network with the occluded feature maps. Note that since the
AHN is constructed on top of the human parsing network,
the latter remains frozen and will not be trained again. In
our experiments, the adversarial hiding network was initialized
with the Xavier [66] and was trained for 50k using a learning
rate of 10−6. The multi-scale network was then trained for 8k
iterations with occluded feature maps using a learning rate of
10−6. Algorithm 1 summarizes the adversarial learning steps.

3) Hard Negative Mining: Our detector has to evaluate
a considerable number of reference boxes, yet only a few
locations contain pedestrians, which causes a significant class
imbalance during the training. For more stable training, instead
of using all negative samples, we sorted them by the highest
loss values and kept the top ones so that the ratio between the
negatives and positives is at most 5:1. We filtered out most
simple samples and made the detector focus on the foreground
and the most confusing negative instances.

4) Data Augmentation: To make our model more robust
to sizes and illumination variations, we adopted following
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data augmentation strategies: color distortion, expansion and
horizontal flip [47]. We randomly expanded the training image
with a factor α ∈ [1, 4] to create more small training examples.

IV. EXPERIMENTS

A. Datasets and Evaluation Protocols

We conducted experiments on three challenging pedestrian
detection datasets, Caltech [14], KITTI [20] and INRIA [15],
to evaluate our proposed method and compared it with state-of-
the-art pedestrian detection approaches. Here we give a brief
description of these datasets.

1) Caltech [14]: The Caltech dataset is one of most chal-
lenging pedestrian detection benchmark due to the presence
of large number of small targets. We can see in Fig. 5 that
about 60% of the pedestrians from the Caltech training set
have a height smaller than 100 pixels. The dataset consists
of about 10 hours videos collected from a vehicle driving
through regular urban traffic. The log-average miss rate is
used to evaluate the detection performance and is calculated by
averaging miss rates at 9 false positive per-image (FPPI) points
sampled within the range of [10−2, 100]. In our experiments,
three subsets were considered to demonstrate the performance
on occlusion and small-size issues: Heavy Occluded, Medium
and Overall. In the Heavy Occluded subset, pedestrians are
36-80% occluded; in the Medium subset, pedestrians are of
30-80 pixels height without occlusion; and the Overall subset
consists of all pedestrians taller than 20 pixels with or non
occlusion.

2) KITTI [20]: The KITTI dataset contains 7,481 training
images and 7,518 test images, comprising about 80 thousands
annotations of cars, pedestrians and cyclists. KITTI evaluates
the PASCAL-style mean Average Precision (mAP) under three
difficulty levels: easy, moderate and hard. Under moderate
setting, which is used to rank the competing methods in the
benchmark, the pedestrians taller than 25 pixels with or non
occlusion are considered.

3) INRIA [15]: The INRIA dataset includes 614 positive
and 1,218 negative training images. There are 288 test images
available for evaluating pedestrian detection methods. The log-
average miss rate on FPPI is employed as the evaluation
metric. In the INRIA dataset, pedestrians taller than 50 pixels
with partial or non occlusion are considered for evaluation.

B. Comparison with State-of-the-art Methods

1) Caltech: We used the Caltech training set, which con-
tains 42,782 training images, to train our detection system
and evaluated it on the Caltech testing set. Among the ground
truth annotations, we considered ‘person’ and ‘people’ as
targets to be detected and ignored the rests. We compared our
proposed MDFL and MDFL+Adv models with the methods
that have achieved great performance on Caltech [6], [7],
[11], [17], [19], [44], [46], [49], [68]. As shown in Fig. 7
and Fig. 8, our MDFL method achieves 31.46% and 46.85%
miss rate on the Medium and Overall subsets respectively,
which outperforms the current state-of-the-art methods. The
performance on the Medium subset shows the capability of
our approach to deal with small-size pedestrians. Our MDFL
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Fig. 7. Comparison with the state-of-the-art methods on the Caltech dataset
using the medium setting.
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Fig. 8. Comparison with the state-of-the-art methods on the Caltech dataset
using the overall setting.

method achieves great results on the Overall subset, surpassing
the competitive approaches by 3%. The performance under this
more general setting points out the robustness of our method,
which can perform well under different conditions. Our MDLF
method achieves an impressive 38.53% miss rate on the Heavy
Occluded subset, which outperforms considerably the current
pedestrian detectors. When we further introduce the adversar-
ial hiding network to generate the occlusion situations, we
make the detector even more robust and get 37.45% miss rate
on the Heavy Occluded subset. The second column of Table II
shows the comparison with the state-of-the-art methods using
the Heavy Occluded setting. The comparison with the recent
part-detector based approach [11] which has achieved 49.20%
miss rate, demonstrates the effectiveness of our MDFL and
MDFL+Adv models to handle occlusion issues.

However the performances on the Medium and Overall
subsets are slightly impacted by the adversary training. To
understand this degradation, we qualitatively analyzed the
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Fig. 9. Some confusing examples. The detector is alarmed by the objects that
have similar features with occluded pedestrians.

TABLE II
COMPARISON OF OUR METHOD WITH THE STATE-OF-THE-ART

APPROACHES IN TERMS OF TRADE-OFF BETWEEN ACCURACY AND SPEED.
CALTECH HEAVY OCCLUDED MISS RATE (%), KITTI MAP SCORE (%)

AND RUNTIME ARE TABULATED.

Method Caltech KITTI Runtime
RPN+BF [6] 74.36 61.29 0.5s
SA-FastRCNN [44] 64.35 65.01 0.5s
DeepParts [49] 60.42 58.67 1s
MS-CNN [7] 59.94 73.70 0.14s
SDS-RCNN [17] 58.55 63.05 0.21s
F-DNN [46] 55.13 - 0.3s
F-DNN+SS [46] 53.76 - 2.48s
JL-Tops [11] 49.20 - 0.6s
Ours-MDFL 38.53 66.32 0.07s
Ours-MDFL+Adv 37.45 67.29 0.07s

results and found out the following reason. Our model is more
robust to occlusion issues thanks to the supplement artificial
occlusion instances during the training. However, with this
strategy, our model becomes more likely to be alarmed by
objects that share similar features with occluded pedestrians.
Fig. 9 shows some failed examples where our model is
confused by the objects resembling to pedestrians occluded
by cars.

2) KITTI: We used the KITTI training set to train our
pedestrian detector and evaluated on the designated test set. As
our main task is pedestrian detection, we only considered the
pedestrian class. Our MDFL and MDFL+Adv methods achieve
competitive 66.32%mAP and 67.29%mAP, respectively on the
moderate setting for pedestrian class, which outperform most
approaches [6], [17], [44], [49]. The comparison results are
tabulated in the third column of Table II. The adversary brings
an improvement of 1%mAP to our MDFL model. This result
proves the capability of our adversary to make the pedestrian
detector be more robust to the occlusion issues.

Note that in the KITTI evaluation, cyclists are counted as
false positives and persons-sitting are ignored, while in Caltech
these two classes are labeled as pedestrians. Since the semantic
segmentation information are useful for detecting human body,
this advantage is less helpful on the KITTI dataset. Fig. 10
illustrates some examples of images containing cyclists and
pedestrians in unusual pose from the Caltech test set. Cyclists

Fig. 10. Illustration of the effects of the attention mask on cyclists and
pedestrians in unusual pose. As they share similar features with pedestrians,
our human parsing network will consider them as pedestrians.
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Fig. 11. Comparison with the state-of-the-art methods on the INRIA dataset.

and sitting people have very similar features with pedestrian,
especially the top parts of the body. The attention mask tends
to activate these instances even if we ignored these two classes
during the training on KITTI. This capability is helpful on
the Caltech dataset, but can be harmful on the KITTI dataset
which considers cyclists as an independent class and ignores
persons-sitting.

3) INRIA: We trained our model with 614 positive images
by excluding negative images as there is non pedestrians in
these images. We evaluated our method on the available test
set. Fig. 11 illustrates the results of our approaches and the
methods that perform best on the INRIA dataset [37], [69]–
[73]. Our MDFL and MDFL+Adv detectors achieve state-
of-the-art performances with 5.13% and 4.95% miss rate,
outperforming the previous best competitors by about 2 points.
The comparison demonstrates the superiority of our method.
Since the INRIA dataset is relatively small, this performance



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

TABLE III
MISS RATE (%) ANALYSIS ON THE CALTECH TEST SET WHEN THE KEY

COMPONENTS OF OUR MDFL FRAMEWORK ARE SUCCESSIVELY
DISABLED.

Component disabled Medium Heavy Occ. Overall
Multi-scale 42.85 48.23 55.53
Context module 35.31 44.37 49.99
Attention map 33.27 40.27 47.83
Our MDFL 31.46 38.53 46.85

TABLE IV
COMPARISON OF MISS RATE (%) WITH DIFFERENT SUPERVISION

STRATEGIES FOR THE HUMAN PARSING NETWORK.

Method Medium Heavy Occ. Overall
SAN 33.27 40.27 47.83
SAN+Attcenter 31.46 38.53 46.85
SAN+Attall 32.39 40.51 47.45

points out that our model can converge easily and achieves
great results even if the training set is limited.

4) Efficiency Comparison: Most of the real world appli-
cations require that the pedestrian detector be accurate and
execute at real-time. It is therefore necessary to evaluate
the computation time. Our method executes 0.07 second per
image with an input image of size 640 × 480 on a single
Nvidia 1080Ti GPU. Compared to the most methods, our
approach executes 2× faster (fourth column of Table II).
Specifically, compared to JL-Tops [11], which was proposed
to handle occlusion issue, our method is 8× faster. The
previous best approach on the Caltech medium subset F-
DNN+SS [46] needs 2.48 seconds to process one image, which
is 35× slower than our method. The comparison shows the
efficiency of our proposed MDFL detector which achieves
great detection performance while executes much faster than
competitive methods. Since the adversarial hiding network is
only introduced for the training, the computing time of our
MDFL+Adv model remains the same as the MDFL detector.

C. Ablation Studies

1) MDFL Analysis: In order to analyze the contribution of
the key components of our MDFL framework on the detection
performance, we successively removed each component and
evaluated on Caltech. We mainly studied the effects of the
attention map generated by our human parsing network, the
context module and the multi-scale property. Table III sum-
marizes the results of the ablative experiments.

We first disabled the segmentation-aware attention map
and observed a degradation of the performance by 2% on
the Medium and Heavy Occluded subsets and 1% on the
Overall subset. These results point out the importance of the
fine-grained information for recognizing small and occluded
pedestrians. The attention map effectively guides our detector
to focus on pedestrian regions and in particular visible human
body parts. The human parsing network alleviates the issue
that heavy occluded instances are often ignored by the multi-
scale network which has coarser resolution and tends to be
confused by the background.

When we further removed the context module, the perfor-
mance for detecting small-size targets and occluded pedes-

trians dropped by 2% and 4%, respectively. The context
information have great impacts for our detector to distinguish
pedestrians of small size and occluded instances from the
complex background. These experiments confirm our intuition
that the context information are helpful for inferring correctly
small and/or occluded targets.

We then analyzed the effects of our multi-scale network
which allows the detection of instances of difference sizes
with appropriate feature maps. Instead of multiple detection
layers, we only used the conv fc7 layer for prediction. We
placed all the reference boxes on top of this detection layer.
The results degrade by more than 4% on all subsets, which
demonstrates the importance to use the multi-scale strategy to
effectively detect pedestrians of different sizes.

2) Weakly Supervised Attention Map: As we only used
the bounding box annotations to weakly supervise our human
parsing network, it is important to analysis how to explore the
pixels within the box. We investigated two possibilities: (a)
consider 65% of pixels at the center area of the bounding box
as foreground and the rest as background, which we denote
Attcenter. Some examples are illustrated in the first column of
Fig. 4; (b) consider all pixels within the bounding box as fore-
ground, which we denote Attall. The experiments results are
reported in Table IV. We can see that SAN+Attcenter achieves
better miss rate than SAN+Attall. As the SAN+Attall method
takes into the account considerable number of background for
training, the model is more sensitive and more likely to be
confused by background, which leads to an increase of false
alarms. While in the SAN+Attcenter approach, we minimize
the noises caused by the background and make the human
parsing network focus on the supervision signal from the main
body of pedestrians.

3) Occlusion Strategies Analysis: We compared our ad-
versary with different occlusion strategies to examine its
effect. Some examples of these strategies are illustrated in
Fig. 12. We performed the experiments on the Caltech test set
using the heavy occluded setting. We masked out the same
τ = 40% areas of pedestrian in the following analysis for fair
comparison. Table V summarizes the impacts of the different
strategies on the detection performance.

The first simple strategy consists to randomly occlude
the human body parts on the convolutional feature maps
(Fig. 12(a)). As Table V shows, the miss rate of random
occlusion is 39.35% which is slightly worse than our MDFL.
This drop of performance can be explained by the following
reason. The random occlusion disperses on the entire space
within the pedestrian region. Instead of generating effective
occlusion, this strategy introduces noises.

We then tried a bottom-occlusion strategy (Fig. 12(b))
since this type of occlusion occurs most frequently in real
world scene (Fig. 1). Specifically, given the bounding box
containing a pedestrian, we masked out τ% bottom part of the
region within the box. With this strategy, we obtain 37.68%
miss rate, which is slightly better than our MDFL model.
This performance demonstrates the effectiveness of the data
augmentation to make the detector more robust to occlusion
situation.

Instead of randomly masking out or occluding all the
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Input image (a) Random occlusion (b) Bottom occlusion (c) Adversarial occlusion

Fig. 12. Some examples of various occlusion strategies. Given an input image and a bounding box containing pedestrian, these strategies generate different
types of occlusion and hide 40% areas within the bounding box. From left to right, we (a) randomly mask out areas, (b) hide the bottom parts, and (c) learn
an adversarial hiding network which aims to mask out most relevant parts.

Ground Truths F-DNN+SS SDS-RCNN Ours

Fig. 13. Qualitative comparison of pedestrian detection results with other state-of-the-art methods. The first column shows the input images with the ground
truth bounding boxes drawn in red. The rest columns display the detection results (green bounding boxes) of F-DNN+SS [46], SDS-RCNN [17] and our
MDLF+Adv respectively. We illustrate the predicted bounding boxes with confidence score higher than 0.2. Our proposed method successfully detects heavily
occluded pedestrians and is more robust compared to other approaches. Best viewed in color.

TABLE V
THE EFFECT OF VARIOUS OCCLUSION STRATEGIES ON THE DETECTION

PERFORMANCE UNDER OCCLUSION CONDITIONS. ABLATION
EXPERIMENTS EVALUATED ON THE CALTECH HEAVY OCCLUDED SUBSET.

Method Miss rate (%)
MDFL 38.53
MDFL+random occlusion 39.35
MDFL+bottom occlusion 37.68
MDFL+Adv 37.45

bottom part of the bounding box containing pedestrian, we
then explored the adversary (Fig. 12(c)). Our AHN learns
automatically to hide the most relevant body parts that make
the detector less capable to recognize the targets. As Fig. 12

shows, our AHN tends to mask out the main parts of human
body, letting only the head and feet visible. With this strategy,
we get 37.45% miss rate, which represents 1% improvement
compared to our MDFL approach without artificial occlu-
sion. The result demonstrates the superiority of our adversary
occlusion strategy compared to the random and handcrafted
occlusion manners.

4) Dropout Percentage: How much parts should we hide
is a crucial question and has non negligible effect on the
detection performance. In order to answer this question, we
investigated the impact of different values of the parameter τ .
Table VI tabulates the detection performance according to this
parameter. The experiments point out that with a large value
of τ , we force the detector to focus on the least important
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TABLE VI
DETECTION PERFORMANCE WITH DIFFERENT LEVELS OF ARTIFICIAL

HIDING, REPRESENTED BY THE PARAMETER τ . ABLATION EXPERIMENTS
EVALUATED ON THE CALTECH HEAVY OCCLUDED TEST SUBSET.

MDFL+Adv Miss rate (%)
τ = 20% 39.06
τ = 30% 37.88
τ = 40% 37.45
τ = 50% 38.26
τ = 60% 39.19

body parts, which increases the false detection rate and results
in the drop of performance. The resulting features are not
relevant enough for recognizing pedestrians and make the
detector confused. For example, when we mask out 60% areas
within the pedestrian region, the performance drops to 39.19%.
While with small value of the parameter, the occlusion effect
is limited and can be considered as noises. With τ = 30%,
the detection performance is slightly better than our MDFL.
However, when we mask out only 20% parts, the result
deteriorates to 39.06%. According to the above experiments,
we demonstrate that hiding more parts of pedestrian does not
necessarily lead to a better performance. A trade-off should
be made and it seems masking out 40% parts of human body
leads to best results, with a miss rate of 37.45%.

5) Visualization of Detection Results: Qualitative detection
results of our method and state-of-the-art approaches [17],
[46] are illustrated in Fig. 13. The first column shows the
input images with the ground truth and the rest three columns
sequentially show the detection results by F-DNN+SS [46],
SDS-RCNN [17] and our method. Our proposed detector
successfully locates heavily occluded pedestrians which the
other two methods have missed. The miss detection in the
situation of the second image endangers the pedestrian who
may across the road. Due to occlusion issue, these detectors
are unable to warn the users to anticipate, which may lead
to dramatical accident. In addition, our proposed approach
gets better localization and has much less redundant detections
compared to the two other methods. The qualitative detection
results further demonstrate the superiority of our MDFL+Adv
method in detecting occluded and small-size instances.

V. CONCLUSION

In this paper, we have proposed a multi-grained deep
feature learning based method for pedestrian detection. By
jointly training a multi-scale network and a human parsing
generator, our approach exploits pixel-wise segmentation in-
formation, background context and multi-scale property to
simultaneously handle the occlusion and small-size issues. The
whole detection system is a single stage framework, assuring
a great accuracy/speed trade-off. We have further proposed
an adversarial hiding network, which artificially generates
occluded instances, to make our detector more robust to oc-
clusion issues. The proposed method has achieved impressive
performance on challenging pedestrian detection datasets such
as Caltech, KITTI and INRIA, outperforming most existing
approaches while executing 2× faster.
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