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Abstract—In this paper, we propose a structure-coherent deep
feature learning method for face alignment. Unlike most existing
face alignment methods which overlook the facial structure cues,
we explicitly exploit the relation among facial landmarks to make
the detector robust to hard cases such as occlusion and large pose.
Specifically, we leverage a landmark-graph relational network
to enforce the structural relationships among landmarks. We
consider the facial landmarks as structural graph nodes and
carefully design the neighborhood to passing features among
the most related nodes. Our method dynamically adapts the
weights of node neighborhood to eliminate distracted information
from noisy nodes, such as occluded landmark point. Moreover,
different from most previous works which only tend to penalize
the landmarks absolute position during the training, we propose
a relative location loss to enhance the information of relative
location of landmarks. This relative location supervision further
regularizes the facial structure. Our approach considers the inter-
actions among facial landmarks and can be easily implemented
on top of any convolutional backbone to boost the performance.
Extensive experiments on three popular benchmarks, including
WFLW, COFW and 300W, demonstrate the effectiveness of
the proposed method. In particular, due to explicit structure
modeling, our approach is especially robust to challenging cases
resulting in impressive low failure rate on COFW and WFLW
datasets. The model and code are publicly available at https:
/Igithub.com/BeierZhu/Sturcture- Coherency-Face-Alignment

I. INTRODUCTION

Face alignment, also known as facial landmark detection is
an important topic in computer vision and has attracted much
attention over past few years [1], [2], [3], [4], [5], [6], [7]. As
a fundamental step for face image analysis, face alignment
plays a key role in many face applications such as face
recognition [8], expression analysis [9] and face editing [10].
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Fig. 1. The proposed structure-coherent deep feature learning method
leverages a landmark-graph relational network which provides graph-based
inferences among facial landmarks, exploiting facial key points relations to
constrain landmarks. Most related landmarks are grouped and convolved
together through graph convolutional layers to infer the facial landmarks.
In addition, unlike most existing deep learning based methods which focus
on penalizing the model to minimize the absolute location of landmarks,
we propose a relative location loss to further enhance the facial structure
coherency. With this relative location supervision signal, the model is also
constrained to minimize the relative location errors of the predicted landmarks.

Although significant progress has been made, face alignment
is still a challenging problem due to issues like occlusion, large
head pose and complicated expression.

With the success of deep learning in several computer vision
tasks such as image classification and object detection, many
convolutional neural networks (CNN) based face alignment
methods have been proposed. Existing CNN-based face align-
ment methods can mainly be divided into two categories:
heatmap regression based ones [ 1], [3], [12] and coordinate
regression based [13], [2], [I]. Heatmap regression based
methods commonly produce higher precise localization for
its translation equivariant property [14]. As keeping the high
spatial resolution of feature maps and heatmap is essential for
high accuracy, heatmap regression based methods commonly
utilize stacked hourglass shape networks [15]. However, it
leads to computationally heavy models which are impractical
for deployment in real-world applications. Coordinate regres-
sion based methods are relatively simpler and can be built
on lighter convolutional networks. Therefore, in this work,
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Fig. 2. Comparison between the fully-connected layer and our landmark-graph relational layer. (a) Dense connection in the fully-connected layer where
each landmark is correlated with all others. (b) Sparse and relation-aware graph convolutional layer where information propagate only among most related
landmarks. (c, d) The performance of fully-connected (FC) based and our structure-coherent deep feature learning (SDFL) based methods under different
levels of occlusions. Green and red points correspond to ground-truth and prediction, respectively. The FC based method fails to predict the landmarks due
to occlusions, even the visible parts are incorrectly localized due to interference of occluded landmarks. While our SDFL successfully localizes the visible

parts and infer the occluded landmarks correctly.

we will focus our attention on coordinate regression methods
which result in a better speed/accuracy trade-off.

The fully-connected layers (FC) are commonly used in
such methods to convert convolutional feature maps to fa-
cial landmark coordinates [13], [2], [!]. However, the dense
connections of fully-connected layers make every landmark
correlate to each other. As shown in Fig. 2 (a), in the FC
layer, every landmark coordinate is connected to the same
hidden features. The error of one landmark leads to error of all
other landmarks, especially in hard cases such as occlusion.
As shown in Fig. 2 (c), when we progressively occlude human
face, the error of face contour leads to the error of other parts
of human face. Therefore, the fully-connected architecture is
inefficient which incorporates redundant and noisy information
from occluded landmarks. This raises a natural question: How
to effectively leverage the information among landmarks for
better inference?

In this paper, we propose a structure-coherent deep fea-
ture learning (SDFL) method for robust face alignment by
explicitly exploring the relation among facial landmarks. Since
human face has a regular structure, coherence among different
facial parts provides important cues for effectively localizing
facial landmarks, which helps keep the structure of face and
infer occluded landmarks. With the help of deep geometric
learning, we treat the features of each landmark as a node,
and leverage a graph relational network to propagate features
among the neighboring nodes. Illustrations of graph relational
framework are depicted on the top of Fig. 1 and Fig. 2 (b). The

sparse graph structure endows the model with the capability of
using the facial structure coherence appropriately. The sparse
graph structure is learnt by data-driven based neighborhood
construction and dynamic weight adjustment. Our model can
adaptively update the weight of neighborhood to highlight
landmarks with high confidence while inhibit the information
propagation from noisy landmarks. Fig. 2 (d) shows that
reasoning with structure coherence cues bolster our model
to correctly localize the key points in challenging real-world
situations such as occlusion and large pose. With extreme oc-
clusion situations, our SDFL correctly localizes visible facial
key points and infer the occluded ones. To be more specific,
our SDFL consists of three parts: node embedding module,
dynamic adjacency matrix weighting module and graph re-
lational network. The node embedding module converts the
convolutional features into graph node representations and
the relation is learnt via dynamic adjacency matrix weighting
module, based on which, the graph relational network effec-
tively regresses the coordinate of facial landmarks.

Moreover, we propose a relative location loss function to
provide a supervision signal on relative position of landmarks,
see bottom of Fig. 1. Unlike most existing methods which
only utilize absolute position of landmarks as supervision, our
relative location loss acts as a regularizer to penalize infeasible
local landmark shape and make the model infer correct facial
landmarks.

We evaluate the proposed method on three widely-used face
alignment benchmarks including WFLW [1], COFW [16] and



300W [17]. Experimental results demonstrate the effectiveness
of our approach, which outperforms existing state-of-the-art
regression based methods by a large margin. We conduct
extensive ablation studies to show the effectiveness of each
proposed module and design. In addition, our SDFL can be
easily implemented on top of different convolutional back-
bones. Comparing to the FC layers, when using our landmark-
graph relational network as predictor head, we observe con-
sistent improvement across different backbones including Mo-
bilenetV2 [18], EfficientNet [19], ResNet [20], Res2Net [21],
VGGI16 [22] and HRNet [12].

In summary, the main contributions of this paper are as

follows:

1) We propose a sparse dynamic graph relational network
to explicitly model the interaction among most related
landmarks, making the detector more robust to occlu-
sion, large pose and expression issues.

2) We introduce a relative location loss function to consider
the relative position of landmarks. This supervision
signal allows the network to further pay attention to the
facial structure.

3) We conduct extensive experiments on three challenging
face alignment benchmarks and achieve very competi-
tive and state-of-the-art performance. Furthermore, we
perform comprehensive ablation study to analyze the
contribution of main components and examine the effect
of sparse and dense interaction among landmarks.

II. RELATED WORK

In this section, we briefly review four related topics: conven-
tional landmarks regression, deep learning based coordinate
and heatmap regression based face alignment, and graph neural
network.

A. Conventional Methods

Conventional facial landmark detection models mainly fall
into two categories, i.e., fitting models and Constrained Local
Models (CLMs). Taylor et al. introduced the active appearance
model [23][24] to fit the facial images with a small number of
coefficients, controlling both the facial appearance and the fa-
cial shape. CLMs [25][26] predict the landmarks based on the
global facial shape constraints as well as the independent local
appearance information around each landmark. Locating facial
landmarks with graph structure is related to some previous
works [27] [28], which apply deformable part models [29] to
face analysis. These methods belong to probabilistic graphical
models, which entail hand-crafted potential functions and
iterative optimization for inference. However, our method is
deep learning based graph network, which generates richer
and more expressive feature embeddings and enjoys the faster
inference.

B. CNN based Coordinate Regression

Coordinate regression models directly map the face image
to the landmark coordinates. Zhang et al. [30] improved the
robustness of detection through multi-task learning, i.e., learn-
ing landmark coordinates and predicting facial attributes at the

same time. MDM [13] utilizes the recurrent neural network
for end-to-end model training, and locates landmarks from
coarse to fine. Feng et al. [2] introduced a modified log loss,
named Wing loss, to increase the contribution of small and
medium errors to the training process. LAB [1] regresses facial
landmark coordinates with the help of boundary information
to reduce the annotation ambiguities. In spite of the advantage
of explicit inference of landmark coordinates without any
post-processing, the coordinate regression models generally
underperform heatmap regression models in terms of accuracy.
Unlike these methods which overlook the relation between
landmarks, we propose landmark-graph relational network and
relative location loss function to take the interactions among
facial key points into consideration.

C. CNN based Heatmap Regression

Heatmap regression models consider facial landmark regres-
sion task as a heatmap regression problem. These methods
generally leverage fully convolutional networks (FCNs) to
transform the input image into heatmap which highlights
facial key points. In recent work, stacked hourglass (HG) [15]
is widely used to achieve the state-of-the-art performance.
Yang et al. [11] first normalized faces with a supervised
transform and then predicted heatmap using a HG. Dapogny et
al. [3] proposed an end-to-end deep convolutional cascade
architecture to improve the localization accuracy of HGs.
Liu et al. [31] developed a latent variable optimization strategy
to reduce the impact of ambiguous annotations when training
a 4-stacked HG. In addition to HG, architecture such as HR-
Net [12] is also able to yield excellent performance. Chandran
et al. [32] presented a fully convolutional attention driven
regional architecture for predicting landmarks on very high
resolution facial images without downsampling. Supervision
by Registration and Triangulation (SRT) [33] is an unsuper-
vised approach that utilizes unlabeled multi-view video to
improve the accuracy and precision of landmark detectors.
Dong et al. proposed Teacher Supervises StudentS (TS3) [34]
which is an interaction mechanism between one teacher net-
work and two student networks, to explore unlabeled data. The
student detection networks tend to generate pseudo labels for
unlabeled images, while the teacher network learns to judge
the quality of the generated pseudo labels. Despite their higher
accuracy, heatmap regression models are much more costly
from a computational point of view compared to coordinate
regression models. The expensive computation of the headmap
based approaches is an obstacle for the deployment of such
methods in real-time facial analysis systems. In this work, we
focus on efficient coordinate regression-based methods.

D. Graph Neural Networks

Graph Neural Networks (GNN5s) are a class of models which
try to generalize deep learning to handle graph-structured
data. They are first introduced in [35] and become more and
more popular recently [36]. There are mainly two types of
GNNs: Message Passing based Neural Networks [35], [37],
[38] and Graph Convolution based Neural Networks [39], [40],
[41], [42]. Many recent works have shown that GNNs are
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Fig. 3. An overview of the proposed method. The convolutional backbone computes feature maps from the input face image. The node embedding module
then maps the convolutional features into graph node representations. Together with the dynamic graph adjacency matrix that learned from the dataset and
features extracted from the node embedding module, they are fed into the graph relational layers to infer the facial landmarks. The graph relational layers
permit to interact and propagate information among most related facial key points.

very effective in many computer vision tasks, e.g., RGBD
semantic segmentation [43], action recognition [44], scene
graph generation and reasoning [45], [46], image annota-
tion [47], object detection [48] and 3D shape analysis [49].
Specifically, in this work, we closely follow the so-called graph
convolutional network (GCN) [40] which greatly simplifies the
graph convolution operator by exploiting approximation to the
Chebyshev polynomial based graph spectral filters. It provides
a simple yet effective way to integrate local neighboring node
feature following the graph topology.

III. STRUCTURE-COHERENT DEEP FEATURE LEARNING

As the relative spatial relationship of facial landmarks is
stable, it is desirable to capture and exploit such important
cues for accurate localization. For that, we propose a structure-
coherent deep feature learning (SDFL) method to enforce the
detected landmarks be correct and coherent. Specifically, we
leverage a landmark-graph relational network by consider-
ing each landmark as a node and exploring their relation.
As illustrated in Fig. 3, our SDFL is mainly composed of
four key parts: a convolutional backbone, a node embedding
module, a dynamic adjacency matrix weighting module and
graph relational layers. The convolutional backbone computes
and extracts feature maps from an input image. The node
embedding module maps the convolutional features into graph
node features, and then a sparse graph structure is learnt by
dynamic adjacency matrix weighting module. Finally, the node
features and the sparse graph structure are fed into the graph
relational layers to output the coordinates of facial landmarks.
We propose a relative location loss and a soft wing loss to
supervise the learning. The former one tends to regularize the
local structure of facial landmarks while the latter one makes
the model focus on medium errors of absolute location.

A. Node Embedding

Given the input image, a convolutional backbone first
extracts the convolutional features maps from this image.
However, a graph convolution network cannot directly take
these feature maps as input. In order to train our model in

an end-to-end manner, we design the map-to-node module
to seamlessly map convolutional feature maps to graph node
representations. Specifically, the input convolutional feature
maps F € REXHXW (where C, H and W denote num-
ber of channels, height and width of the feature maps) are
first transformed to the hidden feature maps by non-linear
function H = ¢(F) € RN™HXW ‘where n € Z* is the
expansion coefficient and N is the number of landmarks. In
this paper, we consider two convolution-BN-ReLU blocks with
n = 4 as the non-linear function ¢(-). H is then reshaped to
H° ¢ RV*nHW 1o represent the input node features.

B. Sparse Graph Construction

Landmark-graph relational network propagates information
among nodes based on a adjacency matrix which determines
the edge between nodes. In the face alignment task, due to
the lack of pre-defined adjacency matrix for facial landmarks,
we build it through a two-step process: we first determine
the neighborhood statically for each dataset, then dynamically
adjust the weights of the adjacency matrix during inference.

Neighborhood Construction: Prior to training or inference,
we build the neighborhood in a data-driven way, i.e., treating
each landmark as a node and mining the correlation among
landmarks within the dataset. Specifically, we assemble the
landmark coordinates of the training set into a rank-three data
tensor T € RMXNX2 where M is the number of images,
and the last dimension represents the (z,y) coordinates. We
then slice the tensor T' along the last dimension to generate
T, and T,. Based on T, € RM*N and T, € RM*N  we
calculate Pearson’s correlation coefficient in z and y direction
respectively to form correlation matrices C, € RV*YN and
C,c RNV XN Then, the correlation between nodes is defined
as

1
C= Q(abs(Cw) +abs(Cy)), (1)
where abs(-) returns element-wise absolute value of matrix.
Considering the computation cost and noisy edges, we only
retain the top k£ + 1 largest value of each row of C to form

a sparse binary matrix M € RY*N_ In other words, most
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Fig. 4. Example of 4-neighborhood adjacency matrix of our landmark-graph
relational network, computed from the WFLW dataset with 98 landmarks.

k relevant landmarks are picked as the neighborhood of each
landmark. The binary matrix with self-loops can be written as:

-l

An example of 4-neighborhood adjacency matrix computed
with 98 landmarks is shown in Fig. 4. We can see that
according to this data-driven strategy, each landmark-node is
correlated with its closest 4 neighborhood points.

Dynamic Adjacency Matrix Weighting: The neighbor-
hood is constructed based on the geometric structure of facial
landmarks, while learning relationship among landmarks for
each face aims to take the facial appearance factors like
occlusion and head pose into consideration. Given the binary
matrix M which determines the node neighborhood, we seek
to adaptively adjust its weights, so that we can reduce the
influence of noisy nodes and augment the information from
high confident key points. Formally, given the features H°
extracted from the map-to-node modules, we utilize the global
average pooling layer followed by two fully-connected layers
to map H" to a vector a whose size is equal to the non zeros
in M. Finally, we replace the non zeros value in M with
a to form the dynamic adjacency matrix A. We employ the
binary matrix M to hold the neighborhood and only learn
their weights because the facial shape pattern is stable. By
fixing the sparse connection, we greatly reduce the training
parameters which makes the learning process easier.

1, ifCy e TOPle,_.A,N(Ci )
0, otherwise

2)

C. Graph Relational Layers

Now we have the embed node feature and the dynamic
adjacency matrix, we can infer the landmark coordinate via
the graph relational reasoning. Specifically, the input embed
node feature H is first fed to a graph convolution, followed
by several graph residual blocks. The last graph convolution
(without batch normalization and ReLU operations) maps the
hidden node features to landmark coordinates P € RV*2, An
overview of the graph relational layers architecture is shown
in Fig. 5 for more clarity.

Unlike standard convolutions that operate on local Eu-
clidean structures, e.g., an image grid, the goal of graph

convolution is to learn a function f(-,-) on a graph G ,
which takes node feature H' € RV>*% and the corresponding
adjacency matrix A € RV*¥ as input, and outputs the node
features as H't! € RV*d+1 Here N, [, d; and dj4+1 denote
the number of nodes, index of graph layer, the dimension of
input node features and the dimension of output node feature,
respectively. Every graph convolutional layer can be written
as a non-linear function by,

H''' = f(H', A) 3)

With the specific graph convolutional operators employed by
[40], the layer can be represented as,

H™" = y(c(A)H'WY) “)

where W! ¢ R%*di+1 js a transformation matrix to be
learned, o(-) denotes a normalization operation, and (-) de-
notes BN-ReLLU operation. Following the strategy in [50], we
adopt a row-wise softmax operation as o. Softmax operation
makes the weights of each node like probabilities over its
neighboring nodes, which stabilizes the training process.

Inspired by the success of ResNet [20], we adopt the graph
residual block architecture. Each graph block consists of two
graph convolutional layers and can be formulated based on
Eq. (3) as

H'*' = f(H', A)
H*? = f(H"*', A) + H (5)

D. Loss Functions

We propose two loss functions to train our model: the
relation location loss and the soft wing loss.

Relative location Loss: Conventionally, given predicted
landmark points P and ground-truth landmark points P, the
objective is to minimize the error of the absolute location of
landmark points, i.e., || P — P||. However, by simply minimiz-
ing the error of absolute position, this loss function ignores
the relative location between landmark points. Such relative
position cues are crucial for preserving the facial structure and
allow the model to predict coherent facial landmarks. In order
to provide such information to our model during the training,
we propose a relative location aware loss function which is
based on the Laplacian prior from geometric modeling or 3D
meshing [51]. Specifically, given a landmark point p; and its
neighborhood set N;, where N; = {j : j # i, M;; = 1}, the
Laplacian of p; can be written as:

0; = Z wij(Pi — Pj) = Pi — Z wij Py (6)
JEN: JEN:
where jen, wij = 1 denotes the weight between the nodes.

Our relative location loss minimizes the difference between
the predicted d; and the ground truth §;, which acts as
a regularization term to penalize infeasible local landmark
shape. As far as our knowledge, we are the first to apply such
loss in 2D facial landmark detection.
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Fig. 5. Tllustration of the architecture of our graph relational layers. It consists of a graph convolution-BN-ReLU and several residual graph blocks and a
graph convolution to output the final landmark coordinate. Each graph block is composed of two graph convolution-BN-ReLU. @ denotes the element-wise

addition operation and GraphConv represents the graph convolution.
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Fig. 6. Illustration of L1, Wing and Soft Wing loss functions. wy is set 2. w
and wo are set to 20. Unlike Wing loss, our loss is linear for small errors.

To facilitate the Laplacian computation for all landmarks
P c RV*2 we construct a N x N Laplacian Matrix L as
follows:

—Wij if ] S Nl
Li;=41 ifi=j @)
0 otherwise
and the Laplacians A = [81,d2,- - -, dn]7 can be easily
computed via a matrix multiplication:
A=LP. ®)

In this work, we utilize the uniform Laplacian where the
neighbors are equally weighted, i.e., w;; = ﬁ, Vj € N;, with
|N;| the number of neighborhood. The uniform Laplacian is
quite simple for implementation and has the nice property that
its weights are independent of the landmark positions.

Soft Wing Loss: While the relative location loss permits to
enhance the structure among landmarks, the absolute location
loss plays an important role for accurate face alignment. The
L2 and L1 losses are mainly utilized as absolute location
loss functions in most existing deep learning based methods.
However, as pointed in [2] the L2 loss tends to pay more
attention to large errors and overlooks relatively small errors.

This property prevents the face alignment model to precisely
localize facial landmarks. Therefore, we present Soft Wing
loss to make our model more focus on the errors of medium
range:

|| if |z <wy

wo In(1 + m) + B otherwise

€

SoftWing(x) = { )
which is linear for small values, and take the curve of In(-)
for medium and large values. Similar to Wing loss [2], we use
the non-negative w; to switch between linear and non-linear
part, and ¢ to limit the curvature of the non-linear part. B is
set to w1 — waIn(1 + wy/€) to make function continuous at
wi1. The soft wing loss is plotted in Fig. 6.
The overall loss function for N landmarks is:

N

L= "Upi — pi) + N(6; — 6)), (10)
i=1

where the first term corresponds to the soft wing loss and the

second one is the relative location loss. I(-) corresponds to

the soft wing function and X is the parameter to regularize the
importance of loss functions. We set A = 1 by cross-validation.

E. Discussion

Comparison with Fully-connected layer: The fully-
connected layer and our graph relational layers embed the
feature of landmarks in two different ways. As illustrated in
Fig. 2(a) The CNN backbone and the hidden fully-connected
layer map the input facial image to the hidden vector, which
embed the feature of landmarks globally. Thus, the errors of
some parts of the prediction effects the other parts, as they
share the same hidden feature. As we can observe in Fig. 2(b),
for the FC-based method, the errors of occluded part interfere
the prediction of other visible parts, resulting in wrong lo-
calization. Meanwhile, our graph relational layers embeds the
node feature for each landmark, and propagates node feature
according to their relationship and the dynamic edge weights.
If some parts of predictions fail because of the occlusion, large
pose or other hard condition, the node feature of other parts
degrade gracefully because of the sparse connection among the
node features and the dynamic adjustment of the relationship.
As shown in Fig. 2(d), our SDFL based method is more robust
to hard cases and produces correct localization even in extreme
occlusion. Besides, fully-connected layers are prone to overfit
because of the large number of trainable parameters, while



the graph convolution layer requires much fewer trainable
parameters. Taking N = 98 (number of landmarks annotated
in WFLW dataset) and the hyperparameters used in [2] as
an example, the hidden and last fully-connected layer contain
(2x2x512)x 1024 = 2,097,152 and 1024 x 196 = 200, 704
parameters, respectively, while our hidden and last graph
convolutional layer only need to learn 128 x 128 = 16,384
and 128 x 2 = 256 parameters, respectively. Our graph
relational layers require thus approximatively 138 times fewer
parameters than fully-connected layers.

Comparison with Wing Loss: Wing loss [2] has constant
gradient when error is large, and large gradient for small or
medium range errors, which is defined as:

||
Wing(z) = { win(1 +°7)

€

[ = C

if |z] <w
otherwise

Y

where x is error and C' is w — wln(1l + w/e) to smoothly
link two piece-wise functions. According to our experiment,
the performance of Wing loss is not consistently better than
L1 loss, especially when we train the neural networks on
difficult dataset with heavy occlusion and blur, such as WFLW.
As mentioned in [31], this may be caused by inconsistent
annotations due to various reasons, e.g., unclear or inaccurate
definition of some landmarks, poor quality of some facial im-
ages. Imposing a large gradient magnitude around very small
error to force the model exactly fit the ground truth landmarks
makes the training process unstable. The visualization of L1,
Wing and our Soft Wing loss is shown in Fig. 6. Note that
we discard the linear part of Wing loss, since our proposed
loss can adaptively adjust the magnitude of gradient between
medium (w; < |z| < ws) and large errors (|| > ws). The
magnitude of gradient of the non-linear part is \;I)ﬁ ~ ‘“’72‘ (eis
commonly set to small value). Our proposed loss is insensitive
to outliers where the gradient varies between [, 1] (C'is the
image size). Note that wy should not set to small value because
it will cause gradient vanishing problem.

IV. EXPERIMENTS AND ANALYSIS

In this section, we first introduce the face alignment datasets
and evaluation metrics that we utilized for experiments. We
then provide the implementation details, show the effectiveness
of proposed method on top of different convolutional back-
bones, and then compare the proposed method with the state-
of-the-art approaches. Finally, we present the comprehensive
ablation study which shows the contribution of different key
designs of our framework.

A. Datasets and Evaluation Protocols

We conducted our experiments on three widely-adopted
challenging datasets: WFLW [1], COFW [16] and 300W [17].
Here we provide a brief description of these datasets and
present the evaluation metrics.

Wider Facial Landmarks in-the-Wild (WFLW) dataset is
among the most challenging face alignment benchmark which
includes various hard cases such as heavy occlusion, blur
and large pose. The whole WFLW dataset consists of 10,000
facial images which are splitted into 7,500 training images and

2,500 testing images. Each image in this dataset is manually
annotated with 98 facial landmarks. The testing set is further
divided into several subsets such as large pose, expression,
illumination, make-up, occlusion and blur, which permits to
evaluate the performance of methods facing different issues.

Caltech Occluded Faces in the Wild (COFW) dataset is
collected to present faces with large variations in shape and
occlusions in real-world conditions. COFW 1is an extension
of the Labeled Facial Parts in the Wild (LFPW) dataset [52],
by complementing additional training and test examples with
heavy occlusions. Various types of occlusions are introduced
and result in a 23% occlusion on facial parts on average. The
dataset includes 1,345 training and 507 test images, manually
annotated with 29 landmarks. We also use the re-annotated
test set [53] with 68 landmarks annotation for cross-dataset
validation.

300 Faces In-the-Wild Challenge (300W) dataset contains
face images with moderate variations in pose, expression
and illumination. The training set (3,148 images) includes
the fullset of AFW and the training subsets of LFPW and
HELEN. The full testing set is divided into common subset
(554 images) and challenging subset (135 images). Namely,
the common subset consists of face image in relatively simple
scenarios, while the challenging subset is composed of rela-
tively difficult samples. The face images in this dataset are
semi-automatically annotated with 68 facial landmarks.

Evaluation Metric: We followed the standard evaluation
protocol and evaluated the proposed method with normalized
mean error (NME), failure rate (FR) and area under curve
(AUO).

The NME for each image is defined as:

. 1 - [lp; — pill
NME(p,p) = ; y (12)
where p; and p; are the i-th ground truth and predicted
landmark coordinates respectively, N denotes the number of
landmarks in an image, the inter-ocular distance is utilized as
the normalization factor d.

Failure Rate, namely evaluates the number failed prediction.
Given an image, if the NME is larger than a threshold, then
it is considered as a failed estimation. Following the protocol
in [1], the failure rate for a maximum error of 10% is reported.

Area Under Curve is calculated based on the cumulative
error distribution curve which presents the NME to the pro-
portion of total test samples. Larger AUC means that larger
portion of the test dataset is correctly predicted.

B. Implementation details

We present here some experimental settings and training
strategies.

Data augmentation: All training and testing images are
center-cropped and resized to 256 x 256 before feeding to
our model. In order to improve the generalization capability
of our model, we augmented the training data with random
rotation (40°), translation (+30 px), flipping (50 %), rescal-
ing (£10 %) and random occlusion (20 % of image size). To



TABLE I
EVALUATION ON THE WFLW DATASET USING FULLY-CONNECTED (FC)
LAYERS AND OUR LANDMARK-GRAPH RELATIONAL LAYERS (L-GRL) AS
PREDICTOR HEAD ON TOP OF VARIOUS BACKBONES. CONSISTENT
IMPROVEMENT IS OBSERVED WITH OUR SDFL METHOD AND SOFT WING
LOSS (SWING) COMPARED TO FC AND THE L1 LOSS.

Backbone Head L1 NME(?\zwng

MobileNetV2 f,—CGRL 323 (10.22) 338 (10.16)
EfficientNet-B0 i-CGRL 45128 (1021) 32(1) (10.19)
EfficientNet-B1 E—CGRL j% o 32(1) oo
VGGI6 E?GRL gi; (10.15) 357;‘;’ (10.12)
ResNetl8 i?GRL Zgé (10.26) 322 (40.30)
ResNet34 l]j—CGRL jgg (10.21) jgg (10.28)
Res2Net30_26w_ds Ili(-:GRL 323 (10.29) igg (10.30)
HRNetW18C i—CGRL 3451? (10.15) 32? (10.16)

mitigate the issue of pose variations, we adopt the Pose-based
Data Balancing (PDB) [2] strategy with 9 bins.

Model architecture: We utilized different convolutional
backbones including MobileNetV2 [18], EfficientNet [19],
VGGI16 [22], ResNet [20], Res2Net [21] and HRNet [12] as
our backbone for the experiments. For HRNet, we downsample
feature maps of different resolutions into 8 x 8. For the
architecture of our graph relational layers, we deployed 4
graph residual blocks with hidden feature dimension set to
128. We set the number of neighborhood £ to 3 for adjacency
matrix.

Training: During the training, we employed vanilla SGD
for optimization with a batch size of 64 for 500 epochs. We
set the weight decay and the momentum to 0.0005 and 0.9
respectively. The initial learning rate is 0.01 which is dropped
by 5 every 100 epochs. The parameters of the Soft Wing loss
are set to w; = 2, we = 20 and ¢ = 0.5. Our models are
trained from scratch using Pytorch.

C. SDFL with Different Backbones

Our structure-coherent learning method can be easily im-
plemented with different convolutional backbones. Indeed,
the landmark-graph relational layers (L-GRL) in our SDFL
can be easily constructed on top of different convolutional
backbones as a predictor head. To assess the effectiveness
of our SDFL method, we compare it with the commonly
used predictor head, i.e., fully-connected layers across several
popular convolutional backbones such as MobilenetV2 [18],
EfficientNet [19], ResNet [20], VGG16 [22], Res2Net [21]
and HRNet [12]. For the fully-connected layers based predictor
head, we utilized a hidden FC layer with 256 units followed
by a ReLU activation, and a FC layer to output a vector of
2N real numbers for the 2D coordinates of N landmarks.
We employed Soft wing loss and L1 loss as supervision
signals to train both the FC based and SDFL based models.
The results on the WLFW dataset are listed in Tab. I. We

observe noticeable improvements when our graph relational
layers are utilized as the predictor head, regardless of the con-
volutional backbones and the loss functions. The improvement
is particularly significant when the convolutional backbone
is small, e.g., ResNetl8 with 0.26% and 0.30% gains using
L1 and Soft wing losses, respectively. This means that the
proposed SDFL method is more robust than FC layers in case
where the features extracted from the input image have limited
presentation capability. These results demonstrate superiority
of our SDFL compared to the coordinate regression based
methods which commonly employed FC layers. Furthermore,
the graph relational layers in our SDFL entail fewer learnable
parameters because of the parameter sharing scheme in graph
convolution operations. While in the fully-connected layers,
due to their dense connection property, there are a large
number of parameters to be optimized. Note that, to make
the comparison more convincing, we conducted a series of
experiments with various settings of FC layers (number of
layers and units) and selected the best result listed in Tab. I.

D. Comparison with the State-of-the-Art Methods

In this part, we compare the proposed method with best
performing approaches on three face alignment benchmarks.

WFLW: We evaluate our approach on the WFLW dataset
and compare with state-of-the-art methods in terms of normal-
ized mean error (NME), failure rate (FR) and area under curve
(AUC). To better understand the effectiveness of the proposed
method, we analyze the performance on six subsets with
specific issue, e.g., large pose, exaggerated expression, illu-
mination, make-up, occlusion and blur []. The overall results
are tabulated in Table II. The proposed method achieves 4.35%
NME, 2.72% Failure Rate at 10% and 0.5759 AUC, which
outperforms most state-of-the-art approaches. Our method
fails on only 2.72% of all images, which demonstrates the
robustness of our model. AWing [57] is the most competitive
approach which shows very great results on WFLW. Since
AWing is a heatmap based method, it can produce much more
precise landmark localization than our coordinate regression
based method. However, our method still performs slightly
better than AWing in terms of NME and by large margin in
terms of FR. Since the WFLW consists numerous hard cases,
this comparison points out that our model performs much
better than AWing on the difficult scenarios, which highlight
the robustness of the proposed approach. Some qualitative
results are depicted in Fig. 7 (a), where our model successfully
localizes landmarks in hard cases, such as occlusion, make up
and large pose.

COFW: We compare the proposed method with existing
face alignment approaches on the COFW dataset and tabulate
the results in Table III. When using the COFW training set
for training and evaluating with 29 landmarks, our method
achieves state-of-the-art performance with 3.63% normalized
mean error and 0% failure rate at 10%. These impressive
results outperform the state-of-the-art methods by a large
margin, which demonstrate the superiority of the proposed
SDFL. Note that the 0% failure rate means that our model
correctly localizes the facial landmark on all testing images.



TABLE 11
EVALUATION OF OUR METHOD AND STATE-OF-THE-ART APPROACHES ON FULLSET AND SIX TYPICAL SUBSETS OF WFLW. THE RESULTS IN TERMS OF
NORMALIZED MEAN ERROR, NME (%), FAILURE RATE AT 10%, FR (%) AND AUC ARE REPORTED.

Metric | Method [ Fullset [ Pose [ Expression [ Illumination | Make-up | Occlusion [ Blur
DVLN17[4] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
3FabRec2o [54] 5.62 10.23 6.09 5.55 5.68 6.92 6.38
LABis[1] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
SRT20 [33] 5.13 - - - - - -
NME Wings [7] 511 | 875 5.36 4.93 5.41 6.37 5.81
AGCFNi9 [55] 4.90 8.78 5.00 4.93 4.85 6.26 5.73
LABis[1] + AVSw[56] | 4.76 8.21 5.14 451 5.00 576 543
DeCaFAu [3] 4.62 8.11 4.65 4.41 4.63 5.74 5.38
HRNeto [12] 4.60 7.94 4.85 4.55 4.29 5.44 5.42
AWingio [57] 4.36 7.38 4.58 4.32 4.27 5.19 4.96
SDFL (Ours) 4.35 7.42 4.63 4.29 4.22 5.19 5.08
DVLNi7[4] 10.84 46.93 11.15 7.31 11.65 16.30 13.71
3FabRec20 [54] 8.28 34.35 8.28 6.73 10.19 15.08 9.44
FR LABis[1] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
SRT20 [33] 7.07 - - - - - -
Wingis [2] 6.00 22.72 4.78 4.30 7.77 12.50 7.76
AGCFNi9 [55] 5.92 24.23 541 4.72 5.82 11.00 8.79
LABis[1] + AVS1o[56] 5.24 20.86 4.78 3.72 6.31 9.51 7.24
DeCaFAm [3] 4.84 21.40 3.73 3.22 6.15 9.26 6.61
AWingio [57] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
SDFL (Ours) 2.72 12.88 1.59 2.58 2.43 5.71 3.62
DVLN17[4] 0.4551 | 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973
3FabRec2o [54] 0.4840 | 0.1920 0.4480 0.4960 0.4730 0.3980 0.4340
AUC LABis[1] 0.5323 | 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630
SRT2 [33] 0.5464 - - - - - -
Wingis [2] 0.5504 | 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918
AGCFNi9 [55] 0.5452 | 0.2826 0.5267 0.5511 0.5547 0.4621 0.4823
LABis[1] + AVS1[56] | 0.5460 | 0.2764 0.5098 0.5660 0.5349 0.4700 0.4923
DeCaFAmo [3] 0.563 0.292 0.546 0.579 0.575 0.485 0.494
AWingio [57] 0.5719 | 0.3120 0.5149 0.5777 0.5715 0.5022 0.5120
SDFL (Ours) 0.5759 | 0.3152 0.5501 0.5847 0.5831 0.5035 0.5147
To further verify the generalization capability of our method, TABLE 111

we conduct a cross-dataset evaluation using 300W for training
and evaluate on the COFW-68 dataset annotated with 68
landmarks [53]. Our method outperforms the existing best
approaches by a large margin, with 4.18% NME and 0%
FR. Since the COFW dataset is mainly composed of occluded
faces, this impressive performance indicates the robustness of
our structure-coherent framework to handle heavy occlusions.
Some qualitative results are plotted in Fig. 7 (c), where
the proposed method effectively infers occluded facial parts
without letting the occlusion interfere the visible parts.

300W: We compare our approach against the existing best
performing methods on the 300W dataset. The results are
reported in Table IV. Our model achieves a NME of 2.88% on
the common set, 4.9% on the challenging set and 3.28% on
the full set. Our method outperforms most existing approaches
and achieves very competitive results with the state-of-the-art
methods. Since the 300W dataset is composed of facial image
with relatively simple scenarios, the localization precision is
crucial for the final performance. While the robustness to hard
cases such as occlusion counts less in the final results. As
LUVLI [70] and AWing [57] are heatmap regression based
face alignment methods, they naturally perform better than our
coordinate regression approach due to their higher localization
precision. Some qualitative results are illustrated in Fig. 7 (b),
where our model obtains accurate landmarks localization in
large poses and expressions.

Efficiency Analysis: We analyzed the computational com-

EVALUATION ON THE COFW DATASET IN TERMS OF NME (%) AND
FAILURE RATE (%) AT 10%.

Trained on COFW | Trained on 300W

Method NME FR NME FR
TCDCNi4[30] - - 7.66 16.17
SAPMis[5%] - - 664 572
CFSSi5[59] - - 6.28 9.07
HPMus[53] 750 1300 | 672 671
CCRis5[60] 7.03 10.9 - -
DRDAI6[61] 6.46 6.00 - -
RAR1[62] 6.03 4.14 ; -
SFPD17[63] 6.40 - - -
DAC-CSR17[64] 6.03 473 - -
Wingis[2] 5.44 337 ; -
ODNI9[65] 5.30 - - -
LABis[ 1] 3.92 0.39 4.62 2.17
SANis[66] + AVSo[56] - - 443 2.82
AWingio[57] 4.94 0.99 - -
SDFL (Ours) 3.63 0 4.18 0

plexity with floating point operations (FLOPs). Suppose the
number of landmarks is N, input feature size is I and
output feature size is O. A graph convolutional layer (without
activation) can be viewed as product of three matrices, i.e.
normalized adjacency matrix A € RV>*¥ input node features
H ¢ RM*! and transformation matrix W € RIX9. A
is a N(k + 1)-sparse matrix (k < N). So AHW costs
2N(k+1)I +2NIO = 2N(k + 1+ O)I FLOPs. While the
FLOPs for FC layers under the same input/output condition is
2NINO. The ratio of the a graph convolutional layer and a
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¢) Qualitative results on the COFW testset

Fig. 7. Visualization of results on some testing image from (a) the WFLW dataset with 98 landmarks, (b) the 300W dataset with 68 landmarks and (c) the
COFW dataset with 29 landmarks. From these results, we can see that our model outputs accurate landmarks localization in difficult cases such as make-up,

occlusion, large pose and expression. Better viewed in color.

FC layer with respect to the FLOPs is %, which shows
that the computational complexity of a graph convolutional
layer is much smaller than FC layer if the input and output
size are the same.

In our experiments, we use 4 graph blocks and 1 graph
layer. Denote F' as the hidden feature size. N, I, F, O,k are
set to 98,256,128, 2, 3. The overall FLOPs for our L-GRN is
2N(k+14+F)I+14N(k+1+F)F+2N(k+ 14+ O)F =
29.95M FLOPs by omitting the addition operations of the skip
connections which are negligible. We compare the FLOPs with
some existing methods and tabulate the results in Table IV-D.
The comparison shows that our model achieve better face
alignment performance with smaller FLOPs. We also record
the runtime of our ResNet34 + L-GRN model on a 1080Ti

GPU which takes 23ms to process a 256 x 256 image.

E. Ablation Study

To better understand our model, we performed ablation
experiments on the WFLW dataset using ResNetl8 as con-
volutional backbone. In particular, we analyzed the effect
of the number of neighbors k£ when constructing our adja-
cency matrix in the landmark-graph relational layers, and then
demonstrated the importance of the dynamic edge weighting.
We also examined the contribution of the proposed relative
location loss and soft wing loss to the performance. The whole
results are tabulated in Table VI.

Number of neighbors: We performed the experiments with
different values of k£ from k = 1 to k¥ = 97 and performed



TABLE IV
EVALUATION ON THE 300W COMMON SUBSET, CHALLENGING SUBSET
AND FULLSET IN TERMS OF NME(%).

Method [ Common  Challenging  Full
PCD-CNNis [67] 3.67 7.62 4.44
Chandran et al.20 [32] 2.83 7.04 4.23
CPM+SBRis [68] 3.28 7.58 4.10
SANis [66] 3.34 6.60 3.98
3FabRec2o [54] 3.36 5.74 3.82
LABis[1] 2.98 5.19 3.49
TS310 [34] 291 591 3.49
DU-Netio [69] 2.97 5.53 3.47
DeCaFAus [3] 2.93 5.26 3.39
SRT 20 [33] 2.80 5.61 3.39
HRNeto [12] 2.87 5.15 3.32
LUVLix [70] 2.76 5.16 3.23
AWingio [57] 2.72 4.52 3.07
SDFL(Ours) 2.88 4.93 3.28
TABLE V
EFFICIENCY COMPARISON IN TERMS OF FLOPS AND NME oN WFLW
FULLSET.

Model [ FLOPS (G) NME (%)

LAB [1] 28.583 5.27

Wing [2] 5.396 5.11

Ours 5.165 4.55

this design experiment with several convolutional backbones.
The results are depicted in Fig. 8. Our model achieves great
performances on WFLW dataset with small number of neigh-
bors, i.e. k = 3 or k = 6 for different backbones. According
to the experimental results, the performance degrades if the
adjacency matrix is too sparse or too dense. When k is too
small, each graph node cannot obtain sufficient information
from its correlated neighborhood. While when k& is too large,
the adjacency matrix becomes dense which leads to over-
smoothing of the node features. Note that, when the number of
neighbors is large enough where landmark-nodes are densely
connected, the graph relational layers can be seen as a series
of fully-connected layers. The performance degradation with
dense neighborhood confirms that dense connection tends to
incorporate redundant and noisy information from occluded
landmarks. This observation is common to all convolutional
backbones used in the experiments, which demonstrate that
using an appropriate number of neighborhood is crucial for a
great performance.

Neighborhood Construction: In our experiments, we uti-
lized quite simple strategy to describe relationship among
landmarks, i.e., separately considering x- and y-axis landmark
information. We also jointly considered x- and y-axis land-
mark information to construct the neighborhood. Using the
adjacency matrix built upon this joint strategy, we observe
a performance variation of 0.03%. Since the separate and
joint consideration of x- and y-axis information strategies
lead to negligible localization results difference, we prefer
the separate strategy which is more direct and simple for
implementation.

Dynamic adjacency matrix weighting: We analyzed the
contribution of the dynamic neighborhood learning, which at-
tributes different weights to the edges of graph with respect to

—o— HRNetW18C

ResNet34
—e— MobileNetV2
—o— EfficientNet-BO
4.8 —® Vgglée

4.91

Prm——

g 4.7
w
=
=
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4.5 ° —e
4.4 1 /
136 20 40 97

Top k value

Fig. 8. NME(%) comparison with different number of neighbors k across
various convolutional backbones (HRNetW18C, ResNet34, MobileNetV2,
EfficientNet-BO and VGG16).

the features extracted from input image. For that, we replaced
the dynamic adjacency matrix with a binary adjacency matrix
where all edges have a same weight set to 1. We observed
a degradation of 0.2%, which points out the importance of
dynamic neighborhood learning.

Relative location loss: We then investigated the contribu-
tion of our relative location loss. When we disable the relative
location supervision, we observe a performance drop of 0.1%
to 0.2% depending on the designs choices, e.g., using LI
or soft wing loss as absolute supervision signal and fully-
connected layers or graph relational layers as predictor head.

Soft wing loss: We compared the effect of different absolute
location loss functions such as L1, Wing and our Soft Wing
loss. As tabulated in Table VI and VII, our Soft Wing
loss consistently outperforms Wing loss and L1 loss. The
performance of Wing loss degrades when e decreases, while
our loss benefits from imposing larger gradients on medium
range errors. The performance of Wing loss is even worse than
L1 loss when € is very small. These results demonstrate the
superiority of the proposed soft wing loss.

Qualitative analysis of features nodes: We examined how
the nodes are processed within our graph relational layers.
Different from the spatial features in CNNs which tend to
activate spatial regions that correspond to the most salient parts
of the input image, the features of graph nodes do not have
such correspondence. Thus, visualization of the nodes features
are quite meaningless. Instead, we analyzed the evolution of
similarity of the nodes within the graph relational layers.
For that, we computed the cosine similarity among nodes
features and display the visualization in Fig. 9. We can see
that the node embedding features present limited similarity, but
through the graph relational layers, the features of connected
nodes become much more similar. This visualization shows
that the graph propagation permits to assemble the features of
connected components.



TABLE VI
ABLATION EXPERIMENTS EVALUATED ON THE WFLW TEST SET USING RESNET18 AS THE CONVOLUTIONAL BACKBONE. ANALYSIS SHOW THE
EFFECTS OF VARIOUS COMPONENTS AND DESIGN CHOICES ON THE FACE ALIGNMENT PERFORMANCE IN TERMS OF NME.

Design [

Choice

FC layers v v
Graph relational layers

v

L1 loss
Soft wing loss v
Relative location loss

Dynamic adjacency matrix

v
v

v
v

SNNONS
NN OIS
<

v v

NME 5.23 5.06

5.02

4.95

4.87 4.75

b
23
=)
A~
N
)

4.85

Input image

Adjacency matrix

imilarity of embedded features Similarity of features from layer 2 Similarity of features from layer 4
0 0

Fig. 9. Visualization of the input image, adjacency matrix and the similarity among features of nodes. We show the evolution of the similarity through the
graph relational layers by plotting the input embedded features, features from the 2nd layer and then from the 4th layer of the graph relational layers.

TABLE VII
COMPARISON OF DIFFERENT LOSS FUNCTIONS. ANALYSIS SHOWS THE
EFFECTIVENESS OF SOFT WING LOSS IN TERMS OF THE NME (%).

[1]

[2]

epsilon [ 0.1 02 05 1 1.5 2
L1 4.76

Wing 538 494 476 474 475 473
SoftWing | 468 4.66 4.65 471 471 472

V. CONCLUSION

In this paper, we propose a structure-coherent deep feature
learning method for face alignment. We present a landmark-
graph relational network which consists of a convolutional
backbone, a node embedding module, a dynamic adjacency
matrix weighting module and graph relational layers, to ex-
plore the relation among landmarks. By appropriately con-
sidering the interaction among facial key points, our model
achieves correct facial landmarks localization under hard
cases. In addition, we introduce a relative location loss func-
tion to further enhance the facial structure coherency and a
soft wing loss as an improved version of wing loss which
permits our model to focus on medium rate error during the
training, resulting in a better convergence. Experimental results
on three challenging face alignment benchmarks demonstrate
the effectiveness of the proposed method.

Although our method performs well on hard scenarios
such as occlusion, the localization precision is a shortage of
the proposed method which is a coordinate regression based
framework. We think that incorporating the relationship among
landmarks into the heatmap based face alignment pipeline,
merging the high precision and the structure coherence, would
be an interesting future work.
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