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Abstract—In this paper, we propose a graininess-aware deep
feature learning method for pedestrian detection. Unlike most
existing methods which utilize the convolutional features without
explicit distinction, we appropriately exploit multiple convolu-
tional layers and dynamically select most informative features.
Specifically, we train a multi-scale pedestrian attention via
pixel-wise segmentation supervision to efficiently identify the
pedestrian of particular scales. We encodes the fine-grained
attention map into the feature maps of the detection layers to
guide them to highlight the pedestrians of specific scale and avoid
the background interference. The graininess-aware feature maps
generated with our attention mechanism are more focused on
pedestrians, and in particular on the small-scale and occluded
targets. We further introduce a zoom-in-zoom-out module to
enhances the features by incorporating local details and context
information. Extensive experimental results on five challenging
pedestrian detection benchmarks show that our method achieves
very competitive or even better performance with the state-of-
the-arts and is faster than most existing approaches.

Index Terms—Pedestrian detection, attention, deep learning,
graininess

I. INTRODUCTION

Pedestrian detection is an important research topic in com-
puter vision and has attracted a considerable attention over past
few years [1], [2], [3], [4]. [S], [6], [7], [8], [9], [10], [11]. It
plays a key role in several applications such as autonomous
driving, robotics and intelligent video surveillance. Despite
the recent progress, pedestrian detection task still remains a
challenging problem because of large variation of scales, low
resolution of small-size targets and occlusion issues.

Existing methods for pedestrian detection can mainly be
grouped into two categories: hand-crafted features based [2],
[31, [12], [13] and deep learning features based [6], [7], [8],
[9]. In the first category, human shape based features such
as Haar [1] and HOG [2] are extracted to train SVM [2] or
boosting classifiers [3]. While these methods are sufficient for
simple applications, these hand-crafted feature representations
are not robust enough for detecting pedestrian in complex
scenes. In the second category, deep convolutional neural
network (CNN) learns high-level semantic features from raw
pixels and assimilates useful information from large amount of
data, which shows more discriminative capability to recognize
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pedestrian with complex poses from noisy background [14],
[15], [16]. Deep learning features have significantly improved
pedestrian detection performance and many CNN based meth-
ods have recently been proposed [6], [17], [8], [18], [19].
However, there are still some shortcomings for most of the
methods in this category. 1) They usually employ the convolu-
tional features without distinction, which leads to sub-optimal
results due to the distraction from complex background, such
as occlusion and hard negative samples. The detectors tend to
be confused by background interference, which leads to large
number of miss detections of occluded pedestrians and false
alarms due to cluttered background. 2) Deepest convolutional
layer with coarse resolution and large receptive field is often
used for prediction, which is inefficient for localizing small-
scale targets, despite its high-level semantic features. 3) Most
methods employ heavy deep network and need refinement
stage to boost the detection results. The inference time is
scarified to ensure accuracy, making these methods unsuitable
for real-time application.

In this paper, we propose a graininess-aware deep feature
learning (GDFL) method for pedestrian detection to address
the above issues. Instead of only using deepest layer and
treating all features equally, we utilize appropriate convo-
lutional layers for multi-scale detection, and enhance the
features about human body parts while discard the interference
features due to background. Specifically, we employ multiple
convolutional layers with different resolutions and receptive
field sizes for detection and introduce a multi-scale pedes-
trian attention mechanism to guide the detector to focus on
pedestrian regions. We train the attention via the pixel-wise
segmentation supervision signals to assimilate fine-grained
information and acquire high capability to recognize small-
scale targets and human body parts. By encoding the attention
into the convolutional feature maps of detection branches, they
significantly eliminate background interference while highlight
pedestrians of specific scale for each branch. The resulting
graininess-aware deep features have much more discriminative
capability to distinguish pedestrians, especially the small-
scale and occluded ones from cluttered background. Fig. 1
illustrates the effect of the multi-scale attention on the feature
maps, where shallower layers become more focus on small-
scale pedestrians while deeper layers on large-scale targets.
In addition, we further propose a zoom-in-zoom-out module
(ZIZOM) to improve the detection performance of small-
scale targets. It mimics the intuitive zoom in and zoom out
processes of the human-annotators, when they aim to locate
an object in an image. The module incorporates local details
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Fig. 1. Visualization of the original feature maps from different detection layers of the backbone network (top), and graininess-aware feature maps obtained
with our pedestrian attention (bottom). With our attention mechanism, the background interference is significantly attenuated and each detection layer is more

focused on pedestrians of specific size. Best viewed in color.

and context information in a convolutional manner to enhance
the feature maps of shallower layers which are responsive of
small-scale targets detection. Extensive experimental results on
five widely used pedestrian detection benchmarks demonstrate
the effectiveness of the proposed method. Without any extra
refinement steps, our single stage detector achieves compet-
itive performance on Caltech [20], INRIA [2], KITTI [21],
MOT17Det [22] and CityPersons [23] datasets, and can exe-
cute about 4 times faster than competitive methods.

This paper is an extension of our conference paper [24]. In
summary, the main contributions of this paper are as follows:

1) We propose to learn a multi-scale spatial attention via
pixel-level supervision which has high capability to
identify pedestrian body parts. The attention guides
the detector to focus on pedestrians and avoids the
background interference.

2) We introduce a zoom-in-zoom-out module to enhance
the feature maps of shallow layers by incorporating
details and context information.

3) Based on the convoultional layer dissection results, we
propose a more natural multi-scale attention framework,
which simultaneously guides the detector at spatial and
channel dimensions.

4) We conduct extensive experiments on five challenging
pedestrian detection benchmarks and achieve very com-
petitive and state-of-the-art performance. Furthermore,
we perform comprehensive ablation study to analyze the
contribution of main components.

II. RELATED WORK

In this section, we briefly review three related topics:
pedestrian detection, segmentation in detection, and attention
mechanism.

A. Pedestrian Detection

Existing pedestrian detection methods can mainly be
grouped into two categories: hand-crafted feature based and
deep learning feature based. The Integratal Channel Features
(ICF) [3] is among the most efficient pedestrian detectors
without deep feature learning, which applies integral channel
features with respect to oriented gradient (HOG), color fea-
tures (LUV) and gradient magnitude, and employed boosted
decision forests as classifier. Due to the success of the ICF
framework, the feature representations of ICF have been
widely studied and many variants have been proposed [25],
[26], [27], [13], [28], [29], [30].

With the prevalence of deep convolutional neural network,
which has achieved impressive results in various domains,
most recent pedestrian detection methods are CNN-based.
Many methods were variations of Faster R-CNN [31] which
has shown great accuracy in general object detection. RPN+BF
[5] replaced the downstream classifier of Faster R-CNN with a
boosted forest and used aggregated features with a hard mining
strategy to boost the small size pedestrian detection perfor-
mance. SA-FastRCNN [32] and MS-CNN [33] extended Fast
and Faster R-CNN [34], [31] with a multi-scale network to
deal with the scale variations problem, respectively. Instead of
a single downstream classifier, F-DNN [7] employed multiple
deep classifiers in parallel to post verify each region proposal
using a soft-reject strategy. Different from these two stages
methods, our proposed approach directly outputs detection
results without post-processing [35], [36]. Apart the above
full-body detectors, several human part based methods [37],
[38], [39], [10], [4], [40], [8] have been introduced to handle
occlusion issues. These occlusion-specific methods learned a
set of part-detector, where each one was responsive to detect
a human part. The results from these part detections were
then fused properly for locating partially occluded pedestrians.
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Fig. 2. Overview of the proposed GDFL framework. The model includes th:
in-zoom-out module (ZIZOM). Given an image, the backbone generates multi

ree key parts: convolutional backbone, pedestrian attention module and zoom-
ple features representing pedestrians of different scales. The attention maps are

encoded into backbone feature maps to highlight pedestrians and suppress background interference. ZIZOM incorporates local details and context information

to further enhance the feature maps.

The occlusion-specific detectors were able to give a high
confidence score based on the visible parts when the full-
body detector was confused by the presence of background.
Tian et al. [4] employed a large number of part detectors to
cover various occlusion patterns, which however dramatically
augmented the computational time. Zhou et al.[8] proposed
a multi-label learning strategy to jointly learn part detectors
which takes into the account the relations between differ-
ent parts. In order to save the computation time, several
works integrated the parts information into deep convolutional
network [10], [16]. Instead of part-level classification, we
explore pixel-level masks which guide the detector to pay more
attention to human body parts.

B. Segmentation in Detection

Since our pedestrian attention maps are generated in a
segmentation manner [41], [42], [43], we present here some
methods that have also exploited semantic segmentation in-
formation. Zhao et al. [44] enhanced object detection network
with top-down segmentation feedbacks, where two connec-
tions are established between segmentation and detection
branch for segmentation message propagation. Tian et al. [45]
optimized pedestrian detection with semantic tasks, including
pedestrian attributes and scene attributes. Instead of simple
binary detection, this method considered multiple classes
according to the attributes to handle pedestrian variations and
discarded hard negative samples with scene attributes. Mao et
al. [46] have demonstrated that fusing semantic segmentation
features with detection features improves the performance. Du
et al. [7] exploited segmentation as a strong cue in their F-
DNN+SS framework. The segmentation mask was used in a
post-processing manner to suppress prediction bounding boxes

without any pedestrian. Brazil et al. [9] extended Faster R-
CNN [31] by replacing the downstream classifier with an
independent deep CNN and added a segmentation loss to
implicitly supervise the detection, which made the features be
more semantically meaningful. In DES [47], a segmentation
branch is designed to augment the low level detection feature
map with strong semantic information. Instead of exploiting
segmentation mask for post-processing or implicit supervision,
our attention mechanism directly encodes into feature maps
and explicitly highlights pedestrians.

C. Attention Mechanism

In general, attention can be viewed as a tool to reconfigure
the allocation of available processing resources towards the
most informative parts of an input data. Recently, Atten-
tion mechanism has gained great success across a range of
tasks [48], [49], [50], [51], such image classification [52], per-
son re-identification [53] and image captioning [54]. Shen et
al. [55] presented a sharp attention network using differen-
tiable Gumbel-Softmax sampler to produce sharper attention
maps that can more assertively distinguish relevant visual
structures from irrelevant ones. While most of existing at-
tention models investigated spatial relation of features, in
SENet [56], a ”Squeeze-and-Excitation” block was proposed
to adaptively recalibrate channel-wise feature responses. In-
spired by SENet, Zhang et al. [16] introduced body part
attention via a human body keypoints detector to alleviate the
occlusion problem. Besides, the aforementioned human body
part detectors [4], [40], [8] can also be seen as a type of the
attention mechanism, which tends to focus on different body
parts. Different from the previous works, in this paper, we
propose a multi-scale attention by simultaneously considering
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Fig. 3. Visualization of feature maps from different convolutional layers. Shallow layers have strong activation for small size targets but are unable to recognize
large size instances. While deep layers tend to encode pedestrians of large size and ignore small ones. For clarity, only one channel of feature maps is shown

here. Best viewed in color.

TABLE I
THE HEIGHT AND ASPECT RATIO OF DEFAULT BOX ASSOCIATED TO EACH
DETECTION LAYER. TRF REFERS TO THE THEORETICAL RECEPTIVE FIELD
OF CORRESPONDING LAYER.

Detection Layer Box Height TRF
conv4_3 40, 60, 80 108
conv5_3 110, 130, 150 228
convo_2 180, 210, 240 292
conv7_2 270, 300, 330 356

Aspect ratio: 0.41

both spatial and channel-wise relation of features to guide
pedestrian detection. Our attention is learned in a weakly-
supervised manner, without external model, information or
hand-crafted designed occlusion patterns.

III. GRAININESS-AWARE DEEP FEATURE LEARNING

In this section, we present the proposed GDFL method for
pedestrian detection in detail. Our framework is composed
of three key parts: a convolutional backbone, a scale-aware
pedestrian attention module and a zoom-in-zoom-out module.
The convolutional backbone generates multiple feature maps
for representing pedestrian at different scales. The scale-aware
pedestrian attention module generates several attention maps
which are encoded into these convolutional feature maps. It
forms graininess-aware feature maps which have more capabil-
ity to distinguish pedestrians and body parts from background.
The zoom-in-zoom-out module incorporates extra local details
and context information to further enhance the features. We
then slide two sibling 3 x 3 convolutional layers over the
resulting feature maps to output a detection score and a shape
offset relative to the default box at each location [35]. An
overview of the proposed GDFL framework is illustrated in
Fig. 2.

A. Multi-layer Pedestrian Representation

Pedestrians have a large variance of scales, which is a
critical problem for an accurate detection due to the difference
of features between small and large instances [57], [35]. We
exploit the hierarchical architecture of the deep convolutional
network to address this multi-scale issue. The network com-
putes feature maps of different spatial resolutions with suc-
cessive sub-sampling layers, which forms naturally a feature
pyramid. We use multiple feature maps to detect pedestrians

at different scales. Specifically, we tailor the VGG16 network
[58] for detection, by removing all classification layers and
converting the fully connected layers into convolutional layers.
Two extra convolutional layers are added on the end of the
converted-VGG16 in order to cover large scale targets. The
architecture of the network is presented on the top of Fig. 2.
Given an input image, the network generates multiple convo-
lutional feature layers with increasing sizes of receptive field.
We select four intermediate convolutional layers {conv4_3,
conv5_3, conv6_2, conv7_2} as detection layers for multi-
scale detection. As illustrated in Fig. 3, shallower convolu-
tional layers with high resolution feature maps have strong
activation for small size targets, while large-size pedestrians
emerge at deeper layers. We regularly place a series of default
boxes [35] with different scales on top of the detection layers
according to their representation capability. The detection
bounding boxes are predicted based on the offsets with respect
to these default boxes, as well as the pedestrian probability in
each of those boxes. The high resolution feature maps from
layers conv4_3 and conv5_3 are associated with default boxes
of small scales for detecting small target, while those from
layers conv6_2 and conv7_2 are designed for large pedestrian
detection. The sizes of default boxes for each detection layer
are tabulated in Table I, which are designed smaller than the
theoretical receptive field (TRF). Indeed, according to [59] the
effective impact area of convolutional layers is much smaller
than theoretical receptive field.

B. Pedestrian Attention Module

Despite the multi-layer representation, the feature maps
from the backbone are still too coarse, e.g., stride 8 on
conv4_3, to effectively locate small size pedestrians and rec-
ognize human body parts. In addition, even if each detection
layer tends to represent pedestrian of particular size, it would
also consider target of other scales, which is undesirable and
may lead to box-in-box detection. We propose a scale-aware
pedestrian attention module to make our detector pay more
attention to pedestrians, especially small size ones, and guide
feature maps to focus on target of specific scale via pixel-wise
attention maps. By encoding the fine-grained attention maps
into the convolutional feature maps, the features representing
pedestrian are enhanced, while the background interference is
significantly reduced. The resulting graininess-aware features
have more powerful capability to recognize human body parts
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Fig. 4. Visualization of pedestrian attention maps generated from Caltech test images. From left to right are illustrated: images with the ground truth bounding
boxes, pedestrian v.s. background mask, small-size pedestrian mask, and large-size pedestrian mask. The pedestrian/background mask corresponds to the sum
of the last two masks and can be seen as a single scale pedestrian mask. Best viewed in color.

and are able to infer occluded pedestrian based on the visible
body parts.

The attention module is built based on the layers conv3_3
and conv4_3 of the backbone network. It generates multiple
masks that indicate the probability of pedestrian of specific
size at each pixel location. The architecture of the attention
module is illustrated on the right part of Fig. 2. We construct
a max-pooling layer and three atrous convolutional layers [60]
on top of conv4_3 to get a conv_mask layer which has high
resolution and large receptive field. Each of the conv3_3,
conv4_3 and conv_mask layers is first reduced into (S, + 1)-
channel maps and spatially up-sampled into the image size.
They are then concatenated together and followed by a 1 x 1
convolutional and softmax layer to output the attention maps.
Where S, denotes the number of scale-class and the remaining
dimension corresponds to background. In our GDFL frame-
work, we distinguish small and large pedestrians according to
a height threshold of 120 pixels and set S, = 2. Fig. 4 illus-
trates some examples of pedestrian masks, which effectively
highlight pedestrian regions.

Once the attention maps M € RW>H*X3 are generated,
we encode them into the feature maps of the convolutional
backbone to obtain our graininess-aware feature maps by
resizing the spatial size and element-wise multiplication:

Fy = F;©R(My,j), (2)

where Mg € RW*H*1 and My € RW*HX1 correspond to
the attention maps highlighting small and large pedestrians,
respectively. W and H are the size of input image. R(-,4) is
the function that resizes the input into the size of i*" layer.
©® is the element-wise multiplication operator. F; represents
the feature maps from backbone network while F; is the
graininess-aware feature maps with pedestrian attention. The

i € {conv4, conv5}

j € {conv6, conv7}

mask R(Mg,i) is encoded into the feature maps from layers
conv4_3 and conv5_3, which are responsive for small pedes-
trian detection. While the mask R(Mp,, i) is encoded into the
feature maps from conv6_2 and conv7_2, which are used for
large pedestrian detection. The feature maps with and without
attention maps are shown in Fig. 1, where we can see that
pedestrian information are highlighted while the background
is smoothed with the attention.

C. Zoom-in-zoom-out Module

When the human annotators try to find and recognize a small
object in an image, they often zoom in and zoom out several
times to correctly locate the target. The zoom-in process
allows to get details information and improve the location
precision. While the zoom-out process permits to import
context information, which is a key factor when reasoning
the probability of a target in the region, e.g., pedestrians tend
to appear on the ground or next to cars than on sky [61].
Inspired by these intuitive operations, we introduce a zoom-in-
zoom-out module (ZIZOM) to further enhance the features. It
explores rich context information and local details to facilitate
pedestrian detection.

We implement the zoom-in-zoom-out module in a con-
volutional manner by exploiting the feature maps of dif-
ferent receptive fields and resolutions. Feature maps with
smaller receptive fields provide rich local details, while feature
maps with larger receptive fields import context information.
Fig. 5(b) depicts the architecture of the zoom-in-zoom-out
module. Specifically, given the graininess-aware feature maps
F;, we incorporate the features from directly adjacent layers
F;_; and Fjy; to mimic zoom-in and zoom-out processes.
Each adjacent layer is followed by a convolutional layer of
kernel size 1 x 1 to select features and an up- and down-
sampling operation to harmonize the spatial size of feature
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Fig. 5. Zoom-in-zoom-out module. (a) According to their receptive fields, the layer conv5_3 has more capability to get context information while the layer
conv3_3 is able to get more local details. (b) Architecture of the module. Features from adjacent detection layers are re-sampled and encoded with the

corresponding attention map before to be fused with current detection features.

maps. The sampling operations consist of max-pooling and bi-
linear interpolation without learning parameters for simplicity.
The attention map of the current layer, M ask;, is encoded into
these sampled feature maps, making them focus on targets
of the corresponding size. We then fuse these feature maps
along their channel axis and generate the feature maps for
final prediction with an 1x 1 convolutional layer for dimension
reduction as well as features recombination. Since the feature
maps from different layers have different scales, we use L2-
normalization [62] to rescale their norm to 10 and learn the
scale during the back propagation.

Fig. 5(a) analyzes the effects of the ZIZOM in terms of
receptive field with some convolutional layers. The features
from conv5_3 enhance the context information with the pres-
ence of a car and another pedestrian. Since the receptive field
of conv3_3 matches with size of target, its features are able
to introduce more local details about the pedestrian. The con-
catenation of these two adjacent features with conv4_3 results
in more powerful feature maps as illustrated in Fig. 5(b).

D. Objective Function

All the three components form a unified framework which
is trained end-to-end. We formulate the following multi-task
loss function L to supervise our model:

L = Lconf + >\lLloc + )\mLmask (3)

where Lco, is the confidence loss, Lj,. corresponds to the
localization loss and L, is the loss function for pedestrian
attention maps. \; and J\,, are two parameters to balance

the importance of different tasks. In our experiments we
empirically set A; to 2 and A,, to 1.

The confidence score branch is supervised by a Softmax
loss over two classes (pedestrian vs. background). The box
regression loss Ly, targets at minimizing the Smooth L1
loss [34], between the predicted bounding-box regression
offsets and the ground truth box regression targets. We develop
a weighted Softmax loss to supervise our pedestrian attention
module. There are two main motivations for this weighting
policy: 1) Most regions are background, but only few pixels
correspond to pedestrians. This imbalance makes the training
inefficient; 2) The large size instance occupies naturally larger
area compared to the small ones. This size inequality pushes
the classifier to ignore small pedestrians. To address the above
imbalances, we introduce an instance-sensitive weight

1
wi a+ﬁhi, “)

and define the attention map loss Ly,,sx as a weighted Softmax
loss:

N, S.
Linask _Ni Z Z w;l{ls?éo}éés log(cés) 5)
S i=11,=0
where N is the number of pixels in mask, S, is the number of
scale-class, and h; is the height of the target representing by
the ' pixel. 1{-} is the indicator function. éi* is the ground
truth label of the pixel 7, [; = 0 corresponds to the background
label and cl is the predicted score of " pixel for I, class.
The constants « and 3 are set to 3 and 10 by cross validation.
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IV. CHANNEL ADAPTIVE GRAININESS-AWARE DEEP
FEATURE LEARNING

In this section, we present the proposed CA-GDFL method
for pedestrian detection in details. We first analyze and inter-
pret the different channels of a convolutional layer to better
understand the internal representations of the network. Based
on the channel-wise observations, we introduce the channel
adaptive pedestrian attention module to dynamically highlight
the channels that are responsive to represent the pedestrians.

A. Convolutional Layer Dissection

Our fully-convolutional network is trained for the specific
pedestrian detection task, which makes the network have high
activation for the human body. Generally, by taking the mean
or max operation across the channels of convolutional layer,
we observe that the pedestrian regions have relatively high
activation comparing to the rest. However, do all channels
of the feature maps have high activation for pedestrians?
To answer this question, we perform the convolutional layer
dissection to visualize the internal representation of the feature
maps and analyze the reactions of each channel.

Qualitatively, we observe that in a detection layer, a series of
feature maps have high activation for pedestrians while another
sets react to different background regions but not pedestrians.
Some examples are depicted in Fig. 6. Meanwhile, we perform
the quantitative analysis to further interpret this observation.
Given the feature maps F; of the i*" detection layer and the
pedestrian mask M, spatially reduced at the same size of the
feature maps, we compute the intersection over union (IoU;)
metric between the mask and the ¢! channel of the feature
maps F; . to measure their spatial agreement:

]]-(Fi,c > Ti) N M;
]l(F@C > ’Ti) U M;

where N and U correspond to the intersection and union
operations. 1(F; . > 7;) produces a binary feature map by
thresholding F; . with 7;. In our experiments, we set the value
7; to retain the 5% strongest activation in the feature maps.
We utilize the IoU; . to rank the spatial correlation between
the feature maps and the mask. We observe that about 28%
channels show strong activation for pedestrians.

ToU;, = (©)

B. Channel Adaptive Spatial Attention

According to the convolutional layer dissection, the convo-
lutional layer is composed of a portion of feature maps that
encode for pedestrians and the remaining ones that encode
for other objects. Based on this observation, instead of simple
spatial attention, we propose a channel adaptive graininess-
aware feature learning framework (CA-GDFL) to dynamically
highlight the channels of convolutional layer that activate
for pedestrians. An overview of the CA-GDFL framework is
illustrated in Fig. 7.

Specifically, we simultaneously train a spatial and channel-
wise attention to enhance the features of pedestrians while di-
minish the importance of features representing the background
objects. Instead of using the final pedestrian mask as a single-
channel attention map that provides only spatial information,

(@) (b) (c)

Fig. 6. Qualitative analysis of the convolutional layer dissection. (a) We
compute a mean feature map across the channel dimension and observe that
pedestrians are highlighted. By looking into details we observe that (b) some
feature maps have strong activation for pedestrians, (c) while some other ones
activate for background objects. Best viewed in color.

we generate the attention map from the intermediate result of
segmentation branch to both explore spatial and channel-wise
information. To achieve that, on top of each detection layer,
we construct an attention branch and a segmentation branch in
parallel. The attention branch is composed of 4 convolutional
layers and the segmentation branch consists of 6 layers.
The first three layers of these two branches share the same
parameters. By sharing the parameters, the attention maps can
benefit from the fine-grained segmentation supervision, which
is of key importance for generating high quality attention.
The last layer of the attention branch computes the channel
adaptive spatial attention maps that have the same channel
and spatial dimension as the feature maps of the detection
layer. We then encode the attention into the feature maps via
the element-wise multiplication to obtain the channel adaptive
graininess-aware deep features for pedestrian detection. The
bottom part of Fig. 7 depicts the architecture of the attention
branch and segmentation branch.

C. Scale Specific Pedestrian Segmentation

The goal of the segmentation branch is to provide fine-
grained information for attention learning and highlight pedes-
trians. This branch consists of three 3 x3x 256 and one 1x1x2
convolutional layers followed by an bilinear up-sampling op-
eration and a final 1 x 1 x 2 convolutional prediction layer. In
order to guide each detection layer to focus on the pedestrians
of the specific scale, we reformulate the loss function for each
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where N is the number of pixels in mask, éﬁ is the ground
truth label of the pixel 4, [, = 0 corresponds to the background
label and cﬁs is the estimated score of the i*" pixel for I, class.
The instance-sensitive weight is redefined as follows

B oz—!—ﬁh%

wij = 0 if hz € [hmin,j7 hmax,j]

else

; ®)

where [hminu‘, hmax,j] corresponds to the range of pedestrian
height that the ;' detection layer is responsive. The value of
[Amin,j, Amax,;] for different detection layers are tabulated in
Table II. With this weight, we make the segmentation branch
to focus on the pedestrians of specific scales by ignoring
the supervision signal from non-interested targets. Indeed,
pedestrians of different scales have similar features and by
naively considering those with scale out of the range as
background will confuse the network and leads to sub-optimal
results. Note that, as the segmentation branch is introduced for
helping the attention learning, we can omit this branch during
the inference to save the computation time.

In summary, we supervise the CA-GDFL framework with
the following loss

Na
L = Leont + MiLioc + Am Z Lmaskja )

J

where N, denotes the number of detection branches, which
is set to 4 in our experiments. Comparing to the previous

TABLE 11
THE HEIGHT OF PEDESTRIAN FOR EACH DETECTION LAYER WHEN
GENERATING ATTENTION MASKS IN CA-GDFL. TRF REFERS TO THE
THEORETICAL RECEPTIVE FIELD OF CORRESPONDING LAYER.

Detection Layer | TRF  {Amin, Rmaz }
conv4_3 108 {30, 89}
convs_3 28 {90, 169}
conv6_2 292 {170, 259}
conv7_2 356 {260, -}

relatively coarse small/large scale distinction, the CA-GDFL
framework allows a finer distinction and select more appro-
priate pedestrian regions for each detection branch.

V. EXPERIMENTS AND ANALYSIS

In this section, we first introduce the pedestrian detection
benchmarks and evaluation metrics that we utilized for ex-
periments. We then provide the implementation details and
compare the proposed GDFL and CA-GDFL methods with the
state-of-the-art approaches. Finally, we present the comprehen-
sive ablation study which shows the contribution of different
key components in our framework.

A. Datasets and Evaluation Protocols

We comprehensively evaluated our proposed method on
five benchmarks: Caltech [20], INRIA [2], KITTI [21],
MOT17Det [22] and CityPersons [23]. Here we give a brief
description of these benchmarks.

The Caltech dataset [20] consists of ~10 hours of urban
driving video with 350K labeled bounding boxes. It results
in 42,782 training images and 4,024 test images. The log-
average miss rate is used to evaluate the detection performance
and is calculated by averaging miss rate on false positive per-
image (FPPI) points sampled within the range of [1072,10°],
denoted as M R_s. As the main purpose of our approaches
is to address occlusion issues, we evaluated on the two
subsets: Reasonable and Heavy Occlusion. The Reasonable
subset consists of pedestrians taller than 50 pixels with partial
occlusion (occlusion < 35%). In the Heavy Occlusion subset,
pedestrians are taller than 50 pixels and 36 to 80% occluded.

The INRIA dataset [2] includes 614 positive and 1,218
negative training images. There are 288 test images available
for evaluating pedestrian detection methods. In this dataset,
pedestrians are presented at various scenes and with different
postures. The evaluation metric is the log-average miss rate
on FPPI with the Reasonable setting.

The KITTI dataset [21] consists of 7,481 training images
and 7,518 test images, comprising about 80K annotations of
cars, pedestrians and cyclists. KITTI evaluates the PASCAL-
style mean Average Precision (mAP) with three metrics: easy,
moderate and hard. The difficulties are defined according to
the minimum pedestrian height, occlusion and truncation level.

The MOT17Det dataset [22] consists of 14 video sequences
in unconstrained environments, which results in 11,235 im-
ages. The dataset was collected from multiple different scenes
with the camera installed at different position, resulting in
various point of views. The dataset is split into two parts for
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TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CALTECH DATASET IN TERMS OF MISS-RATE (%) AND RUNNING TIME (s) PER IMAGE. THE
ADDITIONAL ANNOTATIONS INDICATE WHETHER EXTRA INFORMATION ARE EXPLOITED FOR TRAINING.

Reasonable Heavy Occlusion Additional Running
Method M RQQ MRN 9 M R(_D2 MRO 4 annotations time (s)
DeepCascade+ [63] 26.21 26.43 82.19 - - 0.06
MS-CNN [33] 9.95 8.08 59.94 74.58 - 0.14
SA-FastRCNN [32] 9.68 7.47 64.35 - - 0.59
RPN+BF[5] 9.58 7.28 74.36 83.58 — 0.50
F-DNN+SS[7] 8.18 6.89 53.76 69.73 - 2.40
SDS-RCNN[9] 7.36 6.44 58.55 74.19 — 0.20
DeepParts [4] 11.89 12.90 60.42 74.45 Visible-part bbox 1.00
PCN [64] 8.45 8.47 56.70 72.15 - -
JL-Max [8] 10.3 — 48.40 — Visible-part bbox 0.60
FasterRCNN+ATT-vbb [16] 10.33 8.11 45.18 63.52 Visible-part bbox —
PDOE+RPN [65] 7.6 - 44.40 — Visible-part bbox -
Noh et al. [66] 10.85 — 42.42 — Visible-part bbox —
GDEFL (ours) 7.84 6.32 43.18 62.02 — 0.05
CA-GDFL (ours) 7.84 6.04 39.35 59.02 — 0.04

training and testing, which are composed of 7 video sequences
respectively. The Average Precision (AP) is used for evaluating
different methods.

The CityPersons [23] is a recently released pedestrian
detection dataset built on top of the semantic segmentation
benchmark CityScapes [67]. It was recorded in multiple cities
across Europe and consisted of 5,000 images. CityPersons
is a challenging large-scale pedestrian detection benchmark
including a large number of occlusion situations. Similar to
Caltech dataset, we evaluate the log-average miss rate on FPPI
on Reasonable and Heavy Occlusion subsets.

B. Implementation Details

Weakly supervised training for attention module: To
train the pedestrian attention module, we only use the bound-
ing box annotations in order to be independent of any pixel-
wise annotation. To achieve this, we explore a weakly super-
vised strategy by creating artificial foreground segmentation
using bounding box information. In practice, we consider
pixels within the bounding box as foreground while the rest
are labeled as background. We assign the pixels that belong to
multiple bounding boxes to the one that has the smallest area.
As illustrated in Fig. 4, despite the weak supervised training,
our generated pedestrian masks carry significant semantic
segmentation information. Note that the generated attention
is not exactly a rectangle mask for each pedestrian. We can
see that for large scale pedestrians, the generated attention is
highlighting particular part of human such as head and legs.
This is because the attention module is not only supervised
by the pseudo rectangular ground-truth but also by the final
pedestrian detection loss. The weakly supervised training with
the rectangular ground-truth guides the attention to better
distinguish pedestrian regions from the background, while the
detection loss makes it highlighting most relevant human parts
for more effective localization.

Training: We optimize our detector using the stochastic
gradient descent (SGD) algorithm with 0.9 momentum and
0.0005 weight decay unless otherwise stated. We partially
initialize our model with the pre-trained model in [35], and

all new additional layers are randomly initialized with the
“xavier” method [68]. We adopt the data augmentation strate-
gies as in [35] to make our model more robust to scale and
illumination variations. Besides, during the training phase,
negative samples largely over-dominate positive samples, and
most are easy samples. For more stable training, instead of
using all negative samples, we sort them by the highest loss
values and keep the top ones so that the ratio between the
negatives and positives is at most 3:1.

Inference: We use the initial size of input image to avoid
loss of information and save inference time: 480 x 640 for
Caltech and INRIA, 384 x 1280 for KITTI, 1080 x 1920 for
MOT17Det and 1024 x 2048 for CityPersons. In inference
stage, a large number of bounding boxes are generated by
our detector. We perform non-maximum suppression (NMS)
with a Intersection over Union (IoU) threshold of 0.45 to
filter redundant detection. We use a single GeForce GTX 1080
Ti GPU for computation and our detector executes about 20
frames per second with inputs of size 480 x 640 pixels.

C. Comparison with State-of-the-Art Methods

We evaluated the proposed GDFL and CA-GDFL models
on five challenging pedestrian detection benchmarks, Cal-
tech [20], INRIA [2], KITTI [21], MOT17Det [22] and
CityPersons [23], and compared with existing best performing
methods.

Caltech: We trained our model on the Caltech training set
with the original annotations and evaluated on the Caltech
testing set. Table III lists the comparison with state-of-the-
art methods [25], [63], [4], [5], [69], [32], [9], [33], [7] on
Caltech dataset in terms of miss rate and execution time. The
top raws correspond to methods that perform well on the
reasonable subset, while the bottom raws indicate occlusion-
specific approaches. On the reasonable subset, we evaluate
on both the original and new annotations denoted as M RY,
and MRY,, respectively. The new annotations are recently
released [11] to correct the official annotations in terms of box
alignment and consistency. Our approaches achieve compara-
ble performance with the state-of-the-art method [9] using the



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

.80
.64
.50
.40

.30
20 -

= 15.96% VeryFast
14.43% InformedHaar
13.79% LDCF
————13.32% SketchTokens
= 11.22% SpatialPooling
6.88% RPN+BF
6.86% PCN
6.78% F-DNN
= = = 5.04% GDFL (Ours)
= 4.70% CA-GDFL (Ours)

miss rate
o -
(8]

1072 1071 100 10°
false positives per image

Fig. 8. Comparison with state-of-the-art methods on the INRIA dataset using
the reasonable setting.

TABLE IV
COMPARISON WITH PUBLISHED PEDESTRIAN DETECTION METHODS ON
THE KITTI DATASET. THE MAP (%) AND RUNNING TIME (s) ARE
COLLECTED FROM THE KITTI LEADERBOARD.

Method Easy Moderate Hard Time
FilteredICF [29] 69.05 57.12 51.46 2
DeepParts [4] 70.49 58.68 52.73 1
CompACT-Deep [69] 69.70 58.73 52.73 1
RPN+BF [5] 77.12 61.15 55.12 0.6
SDS-RCNN [9] - 63.05 - 0.21
CFM [6] 74.21 63.26 56.44 2
SA-FastRCNN [32] 77.93 65.01 60.42 -
MS-CNN [33] 83.70 73.62 68.28 0.4
GDFL (384 x 1280) 83.78 67.73 60.07 0.15
GDFL (576 x 1920) 84.61 68.62 66.86 0.27
CA-GDFL (576 x 1920) 85.05 68.87 66.93 0.25

original annotations and outperform this method with the new
annotations. These results mean that our methods predict rela-
tively more precise localization. In the heavy occlusion cases,
we also examine a more challenging metric with the FPPI
over the range [107%,10°], referred as M R?,. Our GDFL
and CA-GDFL respectively achieve 43.18% and 39.35 M R©,,
and 62.02% and 59.02 M R©,. These results are significantly
better than most existing occlusion-specific detectors. Our
CA-GDFL outperforms the most competitive method [66]
by 3%, which suggests that our detector, guided by fine-
grained information at both spatial and channel dimensions,
has better capability to identify human body parts and thus to
locate occluded pedestrians. Note that most occlusion-specific
methods explore additional annotations, such as visible-part
bounding box to supervise the models. In contrast, we only
require the bounding box annotations for training our detector.

INRIA: We trained our model with 614 positive images by
excluding the negative images and evaluated on the test set.
Fig. 8 illustrates the results of our approach and the methods
that perform well on the INRIA dataset [72], [13], [28], [73],
[74], [75], [76]. Our GDFL and CA-GDFL detectors achieve
the state-of-the-art performance with 5.04% and 4.70% miss
rate respectively, outperforming the competitive methods by

TABLE V
COMPARISON WITH PUBLISHED STATE-OF-THE-ART METHODS ON
MOT17DET BENCHMARK.

Method Average Precision External data
ACF [27] 0.32 X
DPM [37] 0.61 X
FRCNN [31] 0.72 X
SDP [70] 0.81 X
KDNT [71] 0.89 v
GDFL (Ours) 0.81 X
CA-GDFL (Ours) 0.82 X
TABLE VI

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON THE
CITYPERSONS VALIDATION DATASET. MISS RATE ON THE ORIGINAL
IMAGE RESOLUTION (1024 X 2048) ARE REPORTED.

Method Reasonable Heavy occ.
FRCNN+ATT-part [16] 159 56.6
FRCNN [23] 154 55.0
TLL [77] 15.5 53.6
TLL+MREF [77] 14.4 52.0
RepLoss [78] 13.2 56.9
OR-CNN [79] 12.8 55.7
ALFNet [80] 12.0 51.9
Cascade MS-CNN [81] 12.0 49.4
GDFL (Ours) 14.84 44.17
CA-GDFL (Ours) 13.6 43.2

approximatively 2%. It proves that our methods can achieve
great results even if the training set is of small scale.

KITTI: We trained our model on the KITTI training set
and evaluated on the designated test set. We compared our
GDFL and CA-GDFL approaches with the current pedestrian
detection methods on KITTI [29], [4], [69], [5], [9], [6], [33].
The results are listed in Table IV. Our detector achieves com-
petitive performance with MS-CNN [33] yet executes about
3x faster with the original input size. Apart its scale-specific
property, MS-CNN [33] has explored input and feature up-
sampling strategies which are crucial for improving the small
objects detection performance. Following this process, we up-
sampled the inputs by 1.5 times and we observed a significant
improvement on the hard subset but with more execution
time. Note that in the KITTI evaluation protocol, cyclists are
regarded as false detections while people-sitting are ignored.
With this setting, our pedestrian attention mechanism is less
helpful since it tends to highlight all human-shape targets
including person riding a bicycle. This explains the reason
our model does not perform as well as on KITTTI than that on
Caltech or INRIA.

MOT17Det: We trained and evaluated our detector on the
designated training and testing sets respectively, where the
model trained on Caltech was used as initialization. Table V
tabulates the detection results of our method and the state-
of-the-art approaches. Our GDFL and CA-GDFL detectors
achieve competitive 0.81 and 0.82 average precision (AP)
without using external datasets for training. This performance
demonstrates the generalization capability of our models.
The state-of-the-art method KDNT [71] achieves impressive
0.89 AP, but a large number of additional data such as
ETH [82], Caltech pedestrian [20] and the self-collected
surveillance dataset are included for training.
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TABLE VII
ABLATION EXPERIMENTS EVALUATED ON THE CALTECH TEST SET. ANALYSIS SHOW THE EFFECTS OF VARIOUS COMPONENTS AND DESIGN CHOICES ON
THE DETECTION PERFORMANCE IN TERMS OF MR92.

Component Choice

Single-layer detection v

Multi-layer detection v v v v v v v v v v
Instance-sensitive weight v v v v v v v v
Single scale attention v

Two-scale attention v

Multi-scale spatial-channel att. v

Self multi-scale attention v

Z1ZOM on ﬁ‘conv4_3 l/ |/ |/

ZIZOM on Feonys_3 v

ZIZOM on Fronva_3 v
Miss rate on Reasonable 16.86 9.44 9.16 8.44 8.33 9.35 9.59 7.84 7.84 8.01 8.86
Miss rate on Heavy Occ. 53.44 50.21 47.60 44.68 41.34 46.24 47.69 43.18 39.35 42.86 45.73

CityPersons: We trained our model on the training set
using only the bounding box annotations and evaluated on the
validation set. As CityPersons dataset has larger resolution,
we added two extra convolutional layers to cover largest
pedestrians. Following [23], we optimize our model with the
Adam solver.Table VI shows the comparison with state-of-the-
art methods on CityPersons. It can be observed that our CA-
GDFL achieves competitive performance under the reasonable
situations and outperforms the existing approaches by a large
margin on heavy occlusion cases. We obtain 43.2% miss
rate on the heavy occlusion subset, which corresponds to a
gain of 9% upon the closest pedestrian detection competitor
(ALFNet [80]). The multiple refinement stages in AFLNet
help to improve the results on the reasonable subset with
more precise localization, but are less helpful for recognizing
heavily occluded pedestrians. Recently, Cao et al. applied
the cascade training strategy of Cascade RCNN [83] on the
MS-CNN framework [33], namely Cascade MS-CNN [81].
Although ALFNet and Cascade MS-CNN utilize similar mul-
tiple refinement steps, the two-stage Cascade MS-CNN de-
tector outperforms single-stage detector AFLNet. However,
both methods have much more failures than the proposed
CA-GDFL on the hard cases such as occlusion situations.
These results demonstrate the robustness of our method in
the challenging scenarios such as heavy occlusion cases.

Efficiency Analysis: Since our goal is to propose a fast and
accurate pedestrian detector, we also examined the efficiency
of our method. Tables III and IV compare the running time
on Caltech dataset and KITTI benchmark, respectively. Our
methods are much faster than F-DNN+SS [7] and is about
10x faster than the previous best method on Caltech heavy
occlusion subset, JL-Max [8]. On the Caltech reasonable
subset, SDS-RCNN [9] performs similar results with our
methods, but it requires 4x more inference times than our
approaches. On the KITTT dataset, when we utilize the original
scale of input data, our model can execute at 0.15 second
per image which is faster than all tabulated approaches. The
efficiency is sacrified to enhance the detection performance by
upsampling the input image, but it is still faster than most of
pedestrian detectors. In summary, the comparison shows that
the proposed approaches achieve a favorable trade-off between

speed and accuracy.

From the tables, we can see that CA-GDFL is slightly
faster than GDLF. The main reason is that in GDFL, the
attention maps are produced at the resolution of input image
and then down-sampled at resolutions of different features.
The up-sampling process to obtain high-resolution attention is
relatively time consuming. While in CA-GDFL, the attention
branch is supervised by the pixel-level segmentation masks
only during the training. At inference, the attention map
is directly computed at features resolution without any up-
sampling computations, which makes it slightly faster.

D. Ablation Study

To better understand our model, we conducted ablation
experiments using the Caltech dataset and CityPersons dataset.
We considered our convolutional backbone as baseline and
successively added different key components to examine their
contributions on performance. Table VII summarizes our com-
prehensive ablation experiments.

Multi-layer detection: We first analyzed the advantages
of using multiple detection layers. To this end, we trained a
model with multiple detection branches and another one which
only used the layer conv6_2 for predicting pedestrians of all
scales. The experimental results of these two architectures
demonstrate the superiority of multi-layer detection with a
notable gain of 7% and 3% on the Caltech reasonable and
heavy occlusion subsets, respectively. The mismatch between
the receptive field size and the scale of targets has a significant
impact on the detection performance, which leads to a deterio-
ration of results. For the following experiments, we employed
the multi-layer detection framework.

Attention mechanism: We analyzed the effects of our
attention mechanism, in particular the contribution of the
single-scale attention and the multi-scale attention. To control
this, we compared three models with single-scale, two-scale
and multi-scale attention designs. From Table VII, we can
see that these three models improve the results with 0.28%,
1% and 1.11% gain on the Caltech reasonable subset and
2.61%, 5.53% and 8.87% gain on the Caltech heavy occlusion
subset, respectively. The models with the two-scale and multi-
scale attention perform clearly better than single-scale atten-
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Fig. 9. Hard detection samples where box-based detector is often fooled due to noisy representation. The first row illustrates the images with pedestrians
located by green bounding boxes. The second and third rows show the feature maps without attention maps and the graininess-aware feature maps, respectively.

Best viewed in color.

TABLE VIII
ANALYSIS OF CHANNEL-WISE ATTENTION EFFECT IN TERMS OF MISS
RATE (%) ON CITYPERSONS VALIDATION DATASET.

Method Reasonable Heavy occlusion
GDFL 14.84 44.17
GDFL w channel att. 14.56 43.43
CA-GDFL w/o channel att. 14.57 45.60
CA-GDFL 13.64 43.16

tion framework. The confusions such as box-in-box detection
which can hardly be eliminated by NMS process and results
in false alarms, are suppressed with our multi-scale attention
maps. We observe an impressive improvement on the Caltech
heavy occlusion subset, which demonstrates that the fine-
grained masks better capture information of body parts. Some
examples of occlusion cases are depicted in Fig. 9. We can
see that the features without attention are unable to recognize
human parts and tend to ignore occluded pedestrians. When we
encode the pedestrian masks into these feature maps, human
body parts are considerably highlighted. The detector becomes
able to deduce the occluded parts by considering visible parts,
which makes plausible the detection of occluded targets.

Self multi-scale channel-spatial attention: Our attention
mechanism is trained with the pixel-level segmentation super-
vision. We aim to analyze the contribution of this supervisory
signal. To this end, we developed a self multi-scale attention
model which was optimize using only the usual detection loss
functions. This model achieves 9.35% and 46.24% miss rate
on Caltech reasonable and heavy occlusion subsets, respec-
tively. We observe a drop of 1.02% and 4.9% on the two
subsets compared to the multi-scale attention learned with
the segmentation supervision. These results show that self-
attention can not provide satisfactory guidance, while the fine-
grained information provided by the segmentation supervisory
signal are crucial for high quality attention generation.

Channel attention: We also investigated the effect of the
channel-wise attention on the performance. On one hand, as
GDFL model has only spatial attention, we added a channel-
wise attention layer [56] after each spatial attention layer and
call this model as “GDFL w channel att.”. On the other hand,
in CA-GDFL instead of producing the channel adaptive spatial
attention maps that have the same channel and spatial dimen-
sion as the feature maps of the detection layer, we computed
single channel spatial attention map by ignoring channel-wise
guidance. Namely, we call this model as “CA-GDFL w/o
channel att””. The experimental results of these models on
CityPersons dataset are reported on Table VIII. We can see that
without the channel-wise guidance, the performance drops by
approximately 1% and more than 2% on reasonable and heavy
occlusion subsets respectively for CA-GDFL framework. With
the channel-wise attention, “GDFL w channel att.” improves
the performance on the heavy occluded subset by nearly 1%.
Remark that without channel-wise attention, as GDFL has
more precise spatial attention maps, it performs slightly better
than “CA-GDFL w/o channel att.” on heavy occlusion subset.

Instance-sensitive weight in Softmax loss: During the
training stage, our attention module was supervised by a
weighted Softmax loss and we examined how the instance-
sensitive weight contributed to the performance. We compared
two models trained with and without the weight term. As listed
in the 7" column of Table VII, the performance drops on
both two subsets of Caltech with the conventional Softmax
loss. In particular, the miss rate increases from 44.68% to
47.69% in heavy occlusion case. The results point out that the
instance-sensitive weight term is a key component for accurate
attention generation. Instead of the reformulated instance-
sensitive weight, the CA-GDFL trained with the standard
instance-sensitive weight performs 8.91% and 41.44% miss
rate. By considering the pedestrians of non-interested scale as
background leads to a slight drop of performance.
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Z1Z0M: We further built the zoom-in-zoom-out module on
our model with attention maps. Table VII shows that with the
ZIZOM on top of the graininess-aware features Fcom4_3, the
performance is ameliorated by more than 1% and 2% on the
Caltech heavy occlusion subsets for the GDFL and CA-GDLF
models, respectively. We observe also a slight improvement on
the reasonable subset. However, when we further constructed
a ZIZOM on Fcom,g,_g, the results were nearly the same.
Since the feature maps Fcom,5_3 represent pedestrians with
about 100 pixels tall, these results confirm our intuition that
context information and local details are important for small
targets but are less helpful for large ones. To better control
the effectiveness of this module, we disabled the attention
mechanism and considered a convolutional backbone with
the ZIZOM on the original feature map Fopya 3 model.
The comparison with the baseline shows a gain of 4% on
the Caltech heavy occlusion subset. The results prove the
effectiveness of the proposed zoom-in-zoom-out module.

VI. CONCLUSION

In this paper, we have proposed a graininess-aware deep
feature learning method for pedestrian detection. We trained
a multi-scale attention mechanism with pixel-level supervi-
sion signal in a weakly-supervised manner. The attention
maps with fine-grained information have higher capability
to distinguish small-scale and occluded targets. By encoding
the attention into the convolutional feature maps, we obtain
more discriminative graininess-aware features which are more
robust to background interference and focus on pedestrians.
We further introduced a zoom-in-zoom-out module to enhance
the feature maps of shallow layers by incorporating context
and local information. Experimental results on five widely-
used pedestrian benchmarks have validated the advantages of
the proposed method on detection robustness and efficiency.
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